
USER MANUAL

© 2024 GDK Software

www.codolex.com

2

Codolex

 © 2024 GDK Software

Table of Contents

1. Introduction

 7

1.1 The idea behind codolex .. 8

2. Getting started with Codolex

 9

2.1 Installation .. 10

2.2 IDE integration ... 10

2.3 Your first Codolex Application ... 11

2.3.1 Create a new project .. 12

2.3.2 Add a module ... 13

2.3.3 Editing flows .. 15

2.3.4 Using flows in code ... 16

2.3.5 Adding a datasource ... 17

2.3.6 Using entities ... 18

2.4 Codolex Concepts .. 20

2.4.1 Project explorer ... 20

2.4.2 Modules .. 20

2.4.3 Flow classes ... 21

2.4.4 Flows .. 22

2.4.5 Data sources .. 22

2.4.6 Local data sources .. 22

2.4.7 Entities .. 22

2.4.8 Search ... 23

3. Code generation

 25

3.1 Automatic code generation .. 26

3.2 Manual code generation .. 26

3.3 File structure .. 27

4. Flows

 28

4.1 Flow handling .. 29

4.2 Start and End ... 31

4.3 Flow results .. 31

4.4 Parameters .. 32

4.5 Visibility ... 32

4.6 Code preview ... 33

4.7 Validation .. 33

5. Codolex API

 35

5.1 API Setup .. 36

5.2 Exposing Data .. 38

5.3 Adding endpoints with flows .. 39

3

Codolex

 © 2024 GDK Software

Table of Contents

5.4 Configure security .. 43

6. Data sources

 46

6.1 Local data sources .. 47

6.2 Connecting to databases .. 48

6.3 Custom database connections .. 49

6.3.1 Nexus DB ... 49

6.4 Entities .. 49

6.5 Nullable fields .. 50

6.6 Importing data structures ... 51

6.7 IniFile Datasource ... 51

6.8 JSON datasource .. 52

6.9 Plugin datasources ... 55

7. Activities

 56

7.1 Structural .. 57

7.1.1 Parameters .. 57

7.1.2 End ... 59

7.1.3 Start .. 60

7.1.4 Sequences ... 61

7.1.5 Decision .. 61

7.1.6 Merge ... 62

7.1.7 Loop ... 63

7.1.8 Exceptions ... 65

7.2 Core .. 66

7.2.1 Flow call .. 67

7.2.2 Code snippet .. 68

7.2.3 Use unit ... 68

7.3 Clipboard ... 69

7.3.1 Write to clipboard .. 69

7.3.2 Read from clipboard ... 70

7.3.3 Clear clipboard ... 71

7.4 Database ... 71

7.4.1 Get from DB ... 72

7.4.2 Save object .. 74

7.4.3 Delete object ... 74

7.4.4 Transactions .. 75
7.4.4.1 Start transaction ... 76

7.4.4.2 Commit transaction .. 76

7.4.4.3 Rollback transaction ... 77

7.4.5 Execute command .. 78

7.5 Date/Time ... 79

4

Codolex

 © 2024 GDK Software

Table of Contents

7.5.1 Calculations ... 80

7.5.2 Check .. 82

7.5.3 Conversion .. 83

7.5.4 Decode .. 85

7.5.5 Encode .. 86

7.5.6 Format .. 87

7.5.7 From ... 88

7.5.8 Operation .. 89

7.5.9 Utils .. 91

7.5.10 Validation .. 92

7.6 Dialogs .. 95

7.6.1 OpenDialog .. 95

7.6.2 SaveDialog ... 97

7.6.3 ShowDialog .. 98

7.6.4 Show modal form ... 99

7.7 Encoding ... 100

7.7.1 Decode .. 100

7.7.2 Encode .. 101

7.8 Entity conversion ... 102

7.8.1 Entity to JSON .. 103

7.8.2 JSON to entity .. 104

7.8.3 Entity to key/value .. 106

7.8.4 Key/value to entity ... 106

7.9 File system ... 107

7.9.1 Copy file/folder .. 108

7.9.2 Create file/folder .. 109

7.9.3 Delete file/folder .. 111

7.9.4 Exists file/folder ... 111

7.9.5 Get path part .. 112

7.9.6 Get system path ... 115

7.9.7 Listing file/folder .. 116

7.9.8 Move file/folder ... 116

7.9.9 Path validations .. 118

7.9.10 Read file .. 123

7.9.11 Write file ... 123

7.10 Hashing ... 124

7.10.1 Hash file .. 125

7.10.2 Hash string/bytes .. 126

7.11 Import/Export .. 127

7.11.1 CSV export ... 127

7.11.2 CSV import ... 128

7.12 IniFile ... 130

7.12.1 IniFile Read .. 130

5

Codolex

 © 2024 GDK Software

Table of Contents

7.12.2 IniFile Write ... 131

7.13 JSON .. 132

7.13.1 Text to JSON .. 133

7.13.2 JSON to text ... 134

7.13.3 Get JSON value ... 134

7.14 Math ... 136

7.14.1 Calculation ... 136

7.14.2 Checks ... 140

7.14.3 Finance .. 143

7.14.4 Rounding ... 148

7.15 Rest operation ... 150

7.16 Regular expressions .. 155

7.16.1 Options .. 156

7.16.2 Escape chars .. 156

7.16.3 IsMatch ... 157

7.16.4 Split string .. 157

7.16.5 Search match ... 158

7.16.6 Replace match ... 159

7.17 String utils .. 160

7.17.1 String change .. 161

7.17.2 String check .. 164

7.17.3 String conversion .. 166

7.17.4 String find .. 169

7.17.5 String parts ... 170

7.17.6 String split .. 173

7.18 Variables .. 174

7.18.1 Create variable ... 174

7.18.2 Clone entity ... 177

7.18.3 Change variable .. 178

7.18.4 List Operations ... 178

7.18.5 Copy entity data ... 180

7.18.6 Free Object .. 181

7.18.7 Get by association .. 182

7.19 Zipping .. 184

7.19.1 Create/open zip file .. 184

7.19.2 Extract zipfile ... 185

7.19.3 Add to zipfile .. 186

7.19.4 Close zipfile .. 188

7.19.5 Listing zip ... 188

7.19.6 Read zip ... 189

7.20 Advanced .. 190

7.20.1 OAuth2 .. 190

7.21 OpenAI .. 193

6

Codolex

 © 2024 GDK Software

Table of Contents

7.21.1 AI Chat .. 193

8. Creating your own activity

 196

8.1 Getting started ... 197

8.2 Implementation ... 199

8.3 Tags ... 207

8.4 Defined entity .. 208

8.5 CodeGen .. 211

8.6 Validation .. 213

8.7 Testing ... 215

8.8 SynEdit Downloads .. 218

9. Command line interface

 219

10. Best practices

 221

10.1 Source control ... 222

10.2 Useful tips and tricks .. 222

10.3 Use multiple flows .. 222

11. FAQ

 223

12. Release notes

 225

12.1 Version 2.8.0 .. 226

12.2 Version 2.7.0 .. 230

12.2.1 Version 2.7.1 .. 231

12.3 Version 2.6.0 .. 232

12.4 Version 2.5.0 .. 235

12.5 Version 2.4.0 .. 241

12.5.1 Version 2.4.1 .. 244

12.6 Version 2.3.0 .. 244

12.7 Version 2.2.1 .. 248

12.8 Version 2.1.0 .. 252

0Index

Introduction

8

Codolex

 © 2024 GDK Software

Introduction

1 Introduction

Welcome to the official guide for Codolex. Here, you will find all the information

you need to get started with Codolex. Click here to open the latest version of the

documentation online.

In the case that you cannot find what you are looking for, please contact support

via support@codolex.com.

1.1 The idea behind codolex

Codolex is a Low Code tool designed for Delphi developers. Codolex enables you

to develop business logic in a visual way. The primary objective of Codolex is to

simplify the development process for every Delphi developer. Using Codolex, you

can create applications by using flows and building blocks or activities. These

activities can be low-level, such as reading a file, or high-level, such as linking

directly to a REST Service. Codolex also simplifies working with databases and

data while keeping the business logic insightful. Finally, Codolex generates code

based on flows, which eliminates vendor lock-in and provides access to the

source code.

Codolex turns your visual flows into platform independent code. This means that

the code generated by Codolex can work on any platform where Delphi is

supported.

https://codolex.com/help/

Getting started with Codolex

10

Codolex

 © 2024 GDK Software

Getting started with Codolex

2 Getting started with Codolex

To run Codolex you need to have a recent version of Delphi installed on your

environment (Delphi 10.3, 10.4, 11.x or later). Codolex supports Windows 10 or

later.

Download the corresponding version of Codolex for your Delphi installation here:

 https://codolex.com/download

2.1 Installation

The Codolex software installation is easy and straightforward.

Execute CodolexSetup executable and follow the installation wizard.

There are three ways to use Codolex, using the Delphi IDE plugin, using the

standalone version, or using the command line compiler. We'll cover the IDE

integration first.

2.2 IDE integration

The Codolex installation will add a menu to the Delphi IDE.

https://codolex.com/download

11

Codolex

 © 2024 GDK Software

Getting started with Codolex

The project explorer is the main window where you can see Codolex projects and

the Codolex structure. You can create a new Codolex project or open an existing

one from the project explorer, which is linked to your active Delphi project. When

you compile your Delphi project, Codolex first generates the source code

automatically, and adds the required paths to the search path of your Delphi

project.

To make the integration work as smoothly as possible, it is best to 'dock' the

project explorer within the Delphi IDE. When you save the layout, the project

explorer remains in the same place, even if you restart Delphi.

2.3 Your first Codolex Application

In your first Codolex application, you will build a simple Delphi application to

consume REST services and develop business logic to work with the results of the

REST calls. We will create an example application to query a time API to get the

current time of a specified time zone.

this guide follows the next 6 steps:

12

Codolex

 © 2024 GDK Software

Getting started with Codolex

· Create a new project

· Add a module

· Editing flows

· Using flows in code

· Adding a datasource

· Using entities

Follow these steps if you want to learn more about the delphi low-code tool and

create your first application.

If you are already comfortable with the basic, check the Activities or other

topic to learn about all the possibilities of Codolex.

2.3.1 Create a new project

To start a new Codolex project, first create an empty Delphi application (VCL or

FireMonkey), save your empty Delphi project, and click the "new project" button

in the Codolex project explorer form:

This will open up the project wizard. The wizard helps in setting up your first

project.

12

13

15

16

17

18

57

13

Codolex

 © 2024 GDK Software

Getting started with Codolex

The first step is to choose a name for the project and the second step is to choose

a location for the project.

A recommended location is in a subfolder next to the project file with the name

'Codolex'.

The third step is to import a data structure.

Data structures are the key to making use of codolex. It maps your database or

JSON structure into entities that codolex can use in activities.

You can read more on how to import a data structure in the topic Adding a

datasource , or continue the guide for your first application by deselection the

option to import

At last you have the option to let codolex create some examples for you. This will

create a basic structure of flows to use and change. For this guide it's not needed,

but you can always use the examples and explore Codolex your way.

If you want to follow the guide go to the next topic: Add a module

2.3.2 Add a module

previous topic: Create a new project

Next, we are going to create a module. Think of a module as a way to group

business logic on a high level, similar to a folder in the Delphi project structure.

Right-click on the project and choose "Add module".

17

13

12

14

Codolex

 © 2024 GDK Software

Getting started with Codolex

Enter a name for the module, for example TimeAPI, and click "Save". A module

with this name will now be visible in the project explorer.

Now create a flow class. Codolex flow classes have the same purpose and

meaning as classes in code. Within a class you can define private, protected and

public methods. These are known as "flows".

Create a flow class by right clicking on the "Flow classes" item below your opened

module.

Give a name for the flow class, for example TimeZone, and click "Save". The flow

class will appear in the project explorer. It is not necessary to use the prefix "T" for

a flowclass. Codolex will add the "T" when the source code is generated.

Now create a flow. The flow is the equivalent of a procedure or function in a class.

Add a flow by right clicking on your flow class in the project explorer. Choose

"Add flow".

15

Codolex

 © 2024 GDK Software

Getting started with Codolex

In the next form, choose the name, for example GetTimeOfTimeZone. Keep the

visibility of your flow public, and click "Save". We will cover the options shown

here later.

The Codolex flow editor will open.

Go to the next topic for editing flows. Where we will build the business logic to

connect to the timezone api.

Editing flows

2.3.3 Editing flows

previous topic: Add a module

To consume a REST services, drop a REST Operation activity on the flow. You can

do this by selecting the REST Operation activity in the Codolex palette, and drag

this on the line between the start of the flow (the green dot) and the end of the

flow (the red dot).

Next, double click on the REST Operation activity in the flow.

For this first example, we just use the following URL to retrieve the JSON from

the Rest API:

https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam

15

13

https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam

16

Codolex

 © 2024 GDK Software

Getting started with Codolex

Copy and paste this URL in the URL edit box. Next, click the three dots next to the

edit box, and click stringify (alternatively, use CTRL+D). In this example, we need

to make sure the URL's content field content is a string so we need to add

quotation marks around it to specify this as actual text. It is also possible to use a

variable in the URL field and it that case, no quotation marks would be needed.

Change the name of the result text to JSONResult, and click Save.

If you want, you can now check the code by clicking the Preview button at the top

of the flow screen to see the code that Codolex will generate.

To show the result of this call, let’s drag and drop a ShowDialog activity after the

REST Operation activity, open it, put JSONResult as the text and set the message

type to Information.

The next topic will show how to use the flow in our delphi project

Using flows in code

2.3.4 Using flows in code

Previous topic: Editing flows

The last thing we have to do is to call this flow from your Delphi application. To

do this, go to your Delphi main form and drop a TButton on the form. Double

click on the button to create the OnClick event.

To execute the flow, right click on the GetTimeFromTimeZone flow, and click “Use

in code”.

16

15

17

Codolex

 © 2024 GDK Software

Getting started with Codolex

You will notice that Codolex created the Flow class, added the call to the flow, and

added the required uses to the unit.

Run the program and click on the button to see the result of the REST Operation.

Next stop:

Adding a datasource

2.3.5 Adding a datasource

Previous topic: Using flows in code

In the next steps, we are going to change the application to convert this JSON to a

structured object. This is called "entities" in Codolex.

The first thing we have to do is to import the JSON structure. Luckily, Codolex has

a handy tool for this (not only for JSON structures, you can also import directly

from a database structure). Let’s import the JSON structure in our example

application.

To do so, right click on Data sources, and click on Add data source.

17

16

18

Codolex

 © 2024 GDK Software

Getting started with Codolex

This will start the "Add data source" wizard. Give the Data source a name, for

example, TimeZone, and choose REST as the data source type. Leave the "Import

data" option to "Yes". After you click the save button, Codolex will open the

"Import" wizard. Select JSON as the "Import" from option, give a name for the

new entity that Codolex will create, for example TimeZoneResult. Now open the

URL https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam,

copy the JSON and paste this JSON in the form.

Click Next. In the following screen, make sure to select the TimeZoneResult

checkbox, click Next again, and finish the wizard.

To see how we can use this entity, go to the next section: Using entities

2.3.6 Using entities

Previous topic: Adding a datasource

18

17

https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam

19

Codolex

 © 2024 GDK Software

Getting started with Codolex

Codolex has now created a new entity with the structure based on the JSON

result. Using entities makes it very easy to work with data in a structured way. Let

us now modify the example application so that the result of the REST Operation is

loaded into a new entity of the TimeZoneResult type.

First, go back to the GetTimeZone flow, and delete the ShowDialog activity. The

REST Operation will return the JSONResult variable that we’ll use to convert this

variable to an entity. To do so, drag and drop a JSON to Entity activity in the flow,

after the REST Operation, and double click on the JSON to Entity activity.

To convert the JSON string to an actual entity, click on the three dots next to the

entity input, and select the TimeZoneResult entity. This is the structure we are

going to import our JSON in. Next, select the JSONResult variable. This should be

the only one available. You can keep the name of the result (TimeZoneResult) and

click save.

Now, let’s now change the flow to a function instead of a procedure so that we

can give back the newly created entity. For this, right click on the JSON to Entity

activity, and click on the option “Set variable TimeZoneResult as return value for

flow”.

You will see now that flow's endpoint displays the flow's result, which, in our case

is an entity. To use this entity in code, let’s change the OnClick code so we store

the result of the flow. As an example, we can display one of the fields of our

entity:

20

Codolex

 © 2024 GDK Software

Getting started with Codolex

By default, all fields in a Codolex entity are nullable. There are several functions

available to work with these nullable fields, which will be explained in more detail

here .

This concludes the basic explanation of creating a Codolex application. In the next

sections we will dive into the details of a Codolex project.

2.4 Codolex Concepts

Codolex uses a project structure to store flows in a structured way. The structure

is designed to be comprehensible for both small and large projects. With multiple

layers for modules, classes, and flow classes, it's easy to separate logic and

structure your application. In addition, the separation of data sources and local

data sources allows for easy collaboration with different team members on a

project.

All layers of Codolex will be covered in concepts for a quick understanding of a

Codolex project.

2.4.1 Project explorer

The project explorer is where Codolex's project structure is visible. Several

Codolex projects can be loaded within the explorer. This can be useful if you have

multiple Codolex projects shared across multiple projects.

Using a right mouse click on "Codolex Projects", a new project can be created or

loaded. To start a new Codolex project, click the "new project" button in the

project explorer form:

You will be prompted to save the project. Codolex will keep all info in subfolders

of the folder containing the project.

2.4.2 Modules

A module is the higest level of the structure of a Codolex project. It is similar to a

folder in the Delphi project structure, under which various source files are

collected.

50

21

Codolex

 © 2024 GDK Software

Getting started with Codolex

To add a module, right-click on the project and choose "Add module".

Enter a name for the module and click "Save". A module with this name will now

be visible in the project explorer.

2.4.3 Flow classes

Codolex flow classes have the same purpose and meaning as classes in code.

Within a class, you can define private, protected, and public methods, called flows.

Create a flow class by right clicking on the "Flow classes" item below an open

module.

Give a name for the flow class and click "Save". The flow class will appear in the

project explorer. It is not necessary to use the prefix "T" for a class. Codolex will

add the "T" when the source code is generated.

22

Codolex

 © 2024 GDK Software

Getting started with Codolex

2.4.4 Flows

The flow is the equivalent of a procedure or function in a class. It's the lowest

level of the Codolex structure, and it's here where you will define the business

logic of an application. Add a flow by right clicking on your flow class in the

project explorer. Choose "Add flow".

In the next form, choose the name and visibility for your flow and click "Save".

The flow will open in the editor. You are now ready to design code. Drag and drop

activities from the palette to create business logic for your application.

2.4.5 Data sources

A data source is a collection of entities. These can be database entities (tables or

views), in-memory entities or REST entities. This data can be accessed through a

data source. When distributing applications, you need to load the data through an

actual connection. See Connecting to databases for more information about

use data sources.

2.4.6 Local data sources

A local data source is a connection to a database on a development machine. This

provides a way to import data structures, and test the database connectivity.

2.4.7 Entities

In Codolex, entities are representations of data. This can be data from a database,

but also from residual services or other sources. See Entities for more

information about entities.

48

49

23

Codolex

 © 2024 GDK Software

Getting started with Codolex

2.4.8 Search

When you have a large Codolex project open, there are several ways to search

and navigate through the project. First is the filter option in the program explorer

window:

This makes it easy to filter flow classes and flows by name.

In addition, you can see in several ways whether a flow, an entity or a data source

are used somewhere in Codolex. To do this, you can right-click on one of the

relevant elements and choose "search usage":

A screen will now open showing all relevant places. By double-clicking, you can

open the relevant flow and activity.

24

Codolex

 © 2024 GDK Software

Getting started with Codolex

Code generation

26

Codolex

 © 2024 GDK Software

Code generation

3 Code generation

With Codolex, you design business logic via flows. However, these flows always

result in source code that needs to be compiled. Codolex can generate this code

automatically, but it is also possible to create the code manually.

3.1 Automatic code generation

Once a Codolex project is linked to your Delphi project, the Delphi plugin of

Codolex will automatically generate the source code the moment you compile or

build the Delphi project. The generated source code will be stored in a new

subfolder named .fsrc. You can choose to add this folder to your code repository

too, but do not make any manual changes to the generated files. Your changes

will be overwritten if you compile your Delphi project.

3.2 Manual code generation

It is possible to generate the source code using the standalone app of Codolex, or

using the command line interface . To generate code using the Codolex

standalone app, right click on your Codolex project file, and click "Generate code".

220

27

Codolex

 © 2024 GDK Software

Code generation

3.3 File structure

Codolex projects have the file extension .fcp. In the location where you save the

Codolex project file, a new folder with the prefix .fc will be created. This folder

contains all the module and flow files. Add these files to your code repository.

The generated source code will be stored in a new folder named .fsrc. You can

choose to add this folder to your code repository too, but do not make any

manual changes to the generated files. Your changes will be overwritten if you

compile your Delphi project.

Flows

29

Codolex

 © 2024 GDK Software

Flows

4 Flows

A flow is the basis on which Codolex's business logic works. A flow consists of

several actions or activities, ultimately resulting in source code.

A new flow can be created via the project explorer. This can be done by right-

clicking on a flow class, and choosing "Add flow". A screen follows to set some

parameters of the new flow.

4.1 Flow handling

A flow consist of activities and sequences. The activities determine the generated

logic, and the sequences determine the relationship between the activities. To add

an activity to a flow, simply drag and drop an activity from the activity palette to

the flow.

30

Codolex

 © 2024 GDK Software

Flows

Sequences connect individual activities. Sequences allow you to set the order of a

flow. An activity always needs one or more incoming sequences and can have

one or more outgoing sequences.

Look for the green and blue highlights to see the usage of flow variables.

Green highlight means, the return variable or parameter from the selected

activity is used here.

Blue highlight means, the return variable or parameter is used in the selected

activity

Variable usage example

31

Codolex

 © 2024 GDK Software

Flows

4.2 Start and End

Every flow has exactly one Start activity. This activity is created automatically and

can't be deleted from a flow. There is one sequence from the start activity to the

first activity of a flow.

A flow can have multiple End activities. The End activity will stop the execution of

the flow and can have a result value to set the result of the flow. Every End activity

will the same result type (e.g. Boolean, Integer, string or custom type).

4.3 Flow results

To set the flow result, double-click on the End activity, or right click and select "Set

variable as return value" on an activity.

32

Codolex

 © 2024 GDK Software

Flows

If you set a flow result, the Codolex will generate the flow code with the

corresponding result:

 procedure FlowWithoutResult;
 function FlowWithResult: TCustomerEntity;

4.4 Parameters

Variables can be passed to flows via parameters.

More info: Parameters

4.5 Visibility

A flow can be private and public. A private flow means that this flow can only be

called within the flow class where the flow is located. A public flow can also be

called from other flow classes. This way, the visibility of a flow can be controlled.

A static flow means that the flow can also be called independently, without

creating a flow class with the generated Delphi code. In the example below, this

flow is invoked as static:

TestProject.Suppliers.Invoices.DeleteCustomer(Customer);

If the flow is not static, the flow class must be created as well:

var Invoices := TestProject.Suppliers.Invoices.TInvoices.Create;
try
 Invoices.DeleteCustomer(Customer);
finally

57

33

Codolex

 © 2024 GDK Software

Flows

 Invoices.Free;
end;

Use static flows for business logic that does not depend on the state of the flow

class. For example; if you have a flow to send messages to customers, where the

customers are collected and stored in a flow class variable, don't use the static

flag.

4.6 Code preview

To preview the code that Codolex will generate, click the preview button in the

menu:

You can leave the preview windows open to see the code changes immediately

when updating flows.

It's also possible to see the code preview for a complete flow class. To see this,

right click on a flow class, and click "Preview source code".

4.7 Validation

Codolex has a comprehensive validation system, to help you find errors, warnings

and hints. If you use the standalone version of Codolex, you always see the

project validation in the main screen:

34

Codolex

 © 2024 GDK Software

Flows

When using the Codolex integration of Delphi, you can open the project

validation results from the menu:

By double-clicking on the error, the corresponding flow will open and the activity

will be selected.

Codolex API

36

Codolex

 © 2024 GDK Software

Codolex API

5 Codolex API

It's possible to expose an API with codolex.

This could be useful for making a coupling with another application, retrieving

web-hook triggers, exposing data, etc.

The API can be configured to offer certain endpoints through a flow, or direct

database access through a data source.

The following topics will help in setting up and configuring an API

Setup API

Exposing Data

Adding endpoints with flows

Configure security

5.1 API Setup

Structure
Setting up an API with Codolex is very simple.

By default the generated code includes a folder

"\.fsrc\[yourcodolexprojectname]\.API". this folder contains the following

files as basis.

· [yourcodolexprojectname].API.Authentication.pas

· [yourcodolexprojectname].API.Controller.base.pas

· [yourcodolexprojectname].API.Server.pas

· [yourcodolexprojectname].API.Server.dfm

If you have a Codolex project linked, the generated folder is included in the search

path by default.

The ...Server.pas file contains everything you need to start the API.

36

38

39

43

37

Codolex

 © 2024 GDK Software

Codolex API

You can include this file anywhere in your project. and start the API with the

following code

begin
 var APIServer := TCodolexAPIProjectApiServer.Create;

 APIServer.Start(8080);
end;

Configuration
The server is normally run on the localhost without a certificate. The Sever

instance is available as property to configure the server.

This can be used set a certificate for example.

var ServerInstance := APIServer.ServerInstance;
var Handler := TIdServerIOHandlerSSLOpenSSL.Create;

Handler.SSLOptions.Mode := sslmBoth;
Handler.SSLOptions.KeyFile := KeyFileLocation;
Handler.SSLOptions.CertFile := CertFileLocation;
Handler.SSLOptions.RootCertFile := RootCertFileLocation;
Handler.SSLOptions.SSLVersions := [sslvTLSv1, sslvTLSv1_1,
sslvTLSv1_2];

ServerInstance.OnQuerySSLPort := OnQuerySSL;
ServerInstance.IOHandler := Handler;

Next to the server instance, there are 2 public functions that can be used for

configuration.

1. OnAuthentication

The procedure expects an action to validate the user. The

'TOnAuthenticationEvent' type is the following function

TOnAuthenticationEvent = reference to function(const UserName,
Password: string; const UserRoles: TList<string>; const
SessionData: TDictionary<string, string>): Boolean;

This function gets called before every request to check if the user has the right

access to the object/flow.

The result must be a boolean. you can check the UserName and Password that

the user provides to authorize the request.

The roles will be further explained in the section Configure security

2. WithSwaggerInfo

The API generates Swaggerinfo by default. This swagger info can be given extra

details with the 'TUseSwaggerInfo' function.

TUseSwaggerInfo = reference to function: TMVCSwaggerInfo;

43

38

Codolex

 © 2024 GDK Software

Codolex API

The function has the return the TMVCSwaggerInfo object. This object has some

attributes that can set the swagger information.

So the swagger info can be provided like this:

var SwaggerInfo: TUseSwaggerInfo := function: TMVCSwaggerInfo
begin
 Result.Title := 'TestProject API Server';
 Result.Version := '2.4.0';
 Result.Description := 'TestProject API Server generated by
Codolex';
 Result.ContactEmail := 'info@codolex.com';
end;

var APIServer := TCodolexAPIProjectApiServer.create;
APIServer.WithSwaggerInfo(SwaggerInfo);

Stop server
The server can be stopped by calling the Stop function, or by closing the

application.

5.2 Exposing Data

Available data
When the API is configured and started, the database datasources from the

project are exposed as data to retrieve and set.

For every entity in the database, the following calls are available:

Post -> ServerURL/[DatasourceName]/[Entityname]/

Patch -> ServerURL/[DatasourceName]/[Entityname]/{Identifier}

Delete -> ServerURL/[DatasourceName]/[Entityname]/{Identifier}

Put -> ServerURL/[DatasourceName]/[Entityname]/{Identifier}

Get -> ServerURL/[DatasourceName]/[Entityname]/{Identifier}

Example:

A server hosted on localhost with the project containing a datasourse

"CodolexData" with a table "Orders", you can retrieve order with ID 80 by

39

Codolex

 © 2024 GDK Software

Codolex API

"http://localhost:8080/CodolexData/Orders/80"

Swagger documentation
The server contains an url to retrieve swagger data in JSON for the API.

So the documentation can be always be found at

"[ServerURL]/api/swagger.json" by default.

Use a website like https://editor-next.swagger.io/ to view the documentation in a

structured manner.

DMVCFramework System Controller
When viewing the swagger documentation, one other base for operations can be

found, the "DMVC Framework System Controller"

These calls can be used to get specific information about the server and platform.

Severconfig -> information about the server, like request size and timeout

DescribePlatform -> information about the host of the server

DescribeServer -> information about the available endpoints in simple JSON

format. This includes the database entitties and flow.

5.3 Adding endpoints with flows

Every public flow in a project has the option to become an endpoint for the API.

To expose a flow, you need to set the property Publish as endpoint for API.

http://localhost:8080/CodolexData/Orders/80
https://editor-next.swagger.io/

40

Codolex

 © 2024 GDK Software

Codolex API

There are a few options in the configuration that need some explanation.

Endpoint
REST/HTTP method
This defines the type the method is going to get. By default this is automatic. This

means that the method will always be GET, except if the flow contains a

parameter of type entity. That means that the parameters is expected as body, so

a POST is needed to retrieve a body.

The other available methods are

· GET

· POST

· PUT

· PATCH

· DELETE

· HEAD

· OPTIONS

· TRACE

Custom path
By default the path to call this method is defined by the module, flow class and

name of the flow.

So in this example

The path to call 'Hello world' would be: "ServerURL/demo/simple/helloworld".

When using the custom path, the name is replaced. So if we would take the

example again, and set the custom path to 'directpath', our URL to call would look

like: "ServerURL/demo/simple/directpath".

To make multiple paths available for the same flow, use a semi colon in the

custom path field between the paths.

(Header) Flow
The flow option can be set to a flow that provides header values for the response.

This flow must be a static flow with the result set to list of HttpHeaderValue.

(Can be found in Core.Activities.DataSource)

The header value must contain a 'key' and 'value' string.

41

Codolex

 © 2024 GDK Software

Codolex API

Example flow

Authorization
On the autorization tab, you can define what roles have access to this flow.

The other option is to set the flow as Anonymously accessible, in this case, no

login is needed to call the flow.

More information about logging in and roles can be found at Configure

security

Parameters and return value
The structure of a flow changes the way the endpoint works. while parameters

are usefull for retrieving data, the result can be set to text or an entity to send

data to the caller.

Parameters
Ordinal types of pramaters can be used, this changes the url into

'Module/Flowclass/Flowname/paramater1/parameter2'

take these paramters as example for the hello world flow mentioned above:

43

42

Codolex

 © 2024 GDK Software

Codolex API

Calling "ServerURL/demo/simple/helloworld/world/hello" would fill the

'WorldString' and 'HelloString' parameters with 'hello' and 'world' depending on

the order of the parameters.

Entities can also be used as parameters, these will not be included in the url, but

in the body.

Create a JSON of the entity and provide it as a string in the body, and use a

parameter for the entities.

When providing multiple entities, use a list.

Example, when using event as a parameter:

provide this json in the body:

{

 "EventID": 1,

 "EventDate": "11-11-2024",

}

The HttpRequest entity can also be used as a special parameter, this will be used

next to the existing parameters and provide information about the request.

43

Codolex

 © 2024 GDK Software

Codolex API

it contains information like the caller host or content type, and has associations

to:

 - Header values

 - Query values

 - Form values

The full structure of this entitiy can be found in the plugin datasource

Core.Activities.Datasource.

Return value
The return value can be a string or an entity, the string will be returned as raw

string, and the entity as a JSON.

Keep in mind that associations are parsed with the entitiy, so if 'event' has an

association to 'location', the return value on the request can look something like

this:

{

 "EventID": 1,

 "EventDate": "11-11-2024",

 "Location"": {

 "LocationID": 2,

 "LocationName": "The office",

 ...

 }

}

5.4 Configure security

When setting or getting data with the API, the call must be authenticated with

user name and password.

The only exception on this are the information flows from the framework, and the

flows that are anonymously accessible.

User name and password
To check if the right user name and password are provided, the Authenticate flow

must be provided.

TOnAuthenticationEvent = reference to function(const UserName,
Password: string; const UserRoles: TList<string>; const
SessionData: TDictionary<string, string>): Boolean;

Inlcude in uses: System.Generics.Collections

This is a property that can be set on the API.

var APIServer := TCodolexAPIProjectApiServer.create;

44

Codolex

 © 2024 GDK Software

Codolex API

APIServer.OnAuthentication(AuthenticateUser);

assuming the AuthenticateUser flow is a function of the given type.

In this function, the given user name and password are given as parameters, In

the flow, you can check against a specific value or database if the data is valid.

Set the result value to True when the data is valid. otherwise the response will

always be 403 - Unauthorized

Roles
In addition to username and password, you can also limit access to flows trough

roles.

These roles must be configured in the project

In the flow properties, you can set 1 or more of these project roles.

45

Codolex

 © 2024 GDK Software

Codolex API

When using the Authenticate flow, add roles to the UserRoles list to specify the

roles that belong the user with the given user name and password.

If one Role is present in this list and in the defined roles for a flow. the user is able

to call te flow through the api.

Example
The following code is an example of how the authentication function can be

defined.

function TForm1.AuthenticateUser(const UserName, Password: string;
const UserRoles: TList<string>; const SessionData:
TDictionary<string, string>): Boolean;
begin
 Result := False;

 if (username = 'test') and (password = 'test') then
 begin
 UserRoles.Add('Test');
 Result := True;
 end;

 if (username = 'admin') and (password = 'admin') then
 begin
 UserRoles.Add('Test');
 UserRoles.Add('Admin');
 Result := True;
 end;
end;

Note that harcoded users are used for example purposes. This is not our

recommendation for a exposed API.

Data sources

47

Codolex

 © 2024 GDK Software

Data sources

6 Data sources

A data source is a collection of entities. These can be database entities (tables or

views), in-memory entities or REST entities. This data can be accessed through a

data source.

6.1 Local data sources

A local data source is a connection to a database on a development machine. This

provides a way to import data structures, and test the database connectivity.

To get an overview of all local data sources, choose "Configuration" (in the

standalone app) or "Codolex" (In Delphi) and "Local data sources" from the menu.

This overview shows all local data sources created for the current system. These

local data sources are a local link to the data, and so are not directly linked to a

Codolex project itself.

You can also create a local data source via the add data source wizard. To do this,

right-click on Data sources, choose "Add data source" and under Import Data,

choose "Yes".

In the subsequent screen, enter the database details of the local data source. Click

on "Test connection" to see if the database connection has been created properly.

Then click "Next" to import any data.

48

Codolex

 © 2024 GDK Software

Data sources

6.2 Connecting to databases

To use database activities such as "Get from DB", Codolex must be able to connect

to a database. This requires the Delphi project that Codolex uses to have at least

the data sources properties configured. The easiest way to retrieve the connection

code is to right-click on a data source, and click "Copy connection code". Codolex

will place the connection code in the clipboard, so you can place this in the

initialization section (for example in the DPR file or in a data module) of your

application.

To add database access manually, include the following units to your DPR file or

to the initialisation code of your project:

 Codolex.Framework,

 Codolex.Database.Query.Interfaces,

 Codolex.Database.Query.FireDAC,

 Codolex.Database.Connection.FireDAC,

 System.SysUtils,

Define a function that provides an implementation of IDatabaseQuery. This

interface allows Codolex to communicate with the database. There is a default

implementation available for FireDac. Configure this function, the query provider,

as follows:

 var QueryProvider: TFunc<IDatabaseQuery>;
 // It assumes that there is a FireDac connection available (MyConnection)
 QueryProvider :=
 function: IDatabaseQuery
 begin
 var DbConnection := TDatabaseConnectionFireDAC.Create(MyConnection);
 Result := TDatabaseQueryFireDAC.Create(DbConnection);
 end;

The Codolex Framework is the bridge between your application and the

generated sources. Use the framework to link the database query provider to

your data source by name.

// The name of the data source is e.g. 'MainDatabase'
CodolexFramework.DatabaseQueryProvider['MainDatabase'] := QueryProvider;

Add the following compiler directive to your Delphi project, for example in the

DPR file:

{$STRONGLINKTYPES ON}

Codolex uses RTTI information to retrieve the Databroker for entities dynamically.

49

Codolex

 © 2024 GDK Software

Data sources

6.3 Custom database connections

See this YouTube video for more information

6.3.1 Nexus DB

Files needed:

· Codolex.Database.Connection.NexusDb.pas

· Codolex.Database.Query.NexusDb.pas

· Codolex.Database.Param.DataDb.pas

download here

Code for integration

uses
 Codolex.Framework,
 Codolex.Database.Query.Interfaces,
 Codolex.Database.Connection.NexusDb,
 Codolex.Database.Query.NexusDb;

 var NexusQueryProvider: TFunc<IDatabaseQuery>;
 NexusQueryProvider := function: IDatabaseQuery
 begin
 // Wrap the local TnxDatabase component in the Codolex connection interface
 var Connection := TDatabaseConnectionNexusDb.Create(Self.dbNexusLocal);
 // Create a query wrapper that uses the TnxQuery object with the specified TnxDatabase connection
 Result := TDatabaseQueryNexusDb.Create(Connection);
 end;

 // Link the provider function to your datasource from the Codolex model
 // Replace MainDatabase with the name of your database datasource
 CodolexFramework.DatabaseQueryProvider['MainDatabase'] := NexusQueryProvider;

6.4 Entities

In Codolex, entities are representations of data. This can be data from a database,

but also from REST services or other sources. When importing a table structure

from a database, entities will be created automatically, just like when importing a

REST service. But it is also possible to create entities manually. To do this, right-

click a data source, and click Add Entity or Add View Entity:

https://www.youtube.com/watch?v=6bCNCgqdQ9s
https://codolex.com/downloads/NexusDB.zip

50

Codolex

 © 2024 GDK Software

Data sources

The difference between a normal entity and a view entity is the ability to modify: a

view entity (like a view from a database) is readonly, and can consist of several

other entities.

6.5 Nullable fields

If you use Codolex entities in regular Delphi code you will see that all entities in

Codolex are of type TCodolexField, for example TCodolexField<Integer>. The

following functions are available for a TCodolexField (in this example, a

TCodolexField<string>

For exporting data, there is an option how null-able fields should be handled.

It contains 3 options, null, 0 or '' values, or exclude from the JSON.

51

Codolex

 © 2024 GDK Software

Data sources

6.6 Importing data structures

To import a data structure, right-click on Data sources, choose "Add data source"

and under Import Data, choose "Yes", or right-click on an existing data source and

click Import. If you want to import data structures from a database, Codolex will

list the existing tables and views. After importing, these are displayed as entities

under the data source. If the data source is a different type, you can import data

structures from JSON or CSV. To do this, paste the complete JSON or CSV into

the wizard, and Codolex will create the correct entities based on it.

Codolex will also import the relationships between tables and JSON structures. To

view these relationships, double-click on an entity and open the Associations tab.

To view all the relationships in a certain data source, right-click on the data source

and choose View Model. Codolex will open the data view including all the entities

of the data source.

6.7 IniFile Datasource

To read values from ini files for settings or other data an ini file datasource can be

used.

This datasource is a memory datasource that can be used in the read and write

activity

IniFile Read

IniFile Write

To create an ini file datasource, follow the next steps

1. Create a new datasource called "IniFileSource" or any other name, select

database type memory and set import on true

130

131

52

Codolex

 © 2024 GDK Software

Data sources

2. Select import type 'IniFile' and use the content of the ini file as importdata

3. Select 'Save'

The ini file datasource is now ready to be used in the ini file activities.

6.8 JSON datasource

A Json datasource is a memory datasource that can be created to handle complex

json sturctures.

53

Codolex

 © 2024 GDK Software

Data sources

You can create a new datasource for JSON by adding a memory datasource, and

import the structure from JSON.

1. Create new datasource

54

Codolex

 © 2024 GDK Software

Data sources

2. Import json structure.

3. Resulting data structure

These entities are now Codolex entities available for use in flows.

More information on how to work with JSON:

Json

Entity conversion

132

102

55

Codolex

 © 2024 GDK Software

Data sources

6.9 Plugin datasources

Plugin datasources are datasources made available in Codolex through activities

or third party components.

These datasources contains entities that can be created or returned by activities.

These entities can be used like any other entities in Codolex. With exception of

saving the entity.

Activities

57

Codolex

 © 2024 GDK Software

Activities

7 Activities

Activities are the building blocks of Codolex. We will cover the most commonly

used activities here.

With Codolex it is also possible to create your own activities. Click here if you

want to develop your own activity.

7.1 Structural

With structural activities within Codolex, you define the 'flow' of the application's

logic. Codolex has several ways of modifying the business logic; via decisions,

loops, and sequences.

· Parameters

· End

· Start

· Sequences

· Decision

· Merge

· Loop

· Exceptions

7.1.1 Parameters

Variables can be passed to flows via parameters. These parameters can be of any

type.

Parameter for flow

197

57

59

60

61

61

62

63

65

58

Codolex

 © 2024 GDK Software

Activities

procedure ParameterFlow(const Code: string = 'Test');

When calling a flow from another flow (via the Flow call activity) or via Delphi.

you need to fill in these parameters.

Call flow action

To change the order of the parameters, use the Parameters tab on the flow

properties screen

67

59

Codolex

 © 2024 GDK Software

Activities

7.1.2 End

A flow can have multiple End activities. The End activity will stop the execution of

the flow and can have a result value to set the result of the flow. Every End must

have the same result type (e.g. Boolean, Integer, string or custom type).

Flow end

To set the flow result, double-click on the End activity, or select "Set variable as

return value" on an activity.

60

Codolex

 © 2024 GDK Software

Activities

You can also set the result variable in the properties of an end activity. The drop

down will show the available variables.

7.1.3 Start

Every flow has exactly one Start activity. This activity is created automatically and

can't be deleted from a flow. There is one sequence from the start activity to the

first activity of a flow

61

Codolex

 © 2024 GDK Software

Activities

7.1.4 Sequences

A sequence connects individual activities. Sequences allow you to set the order of

a flow. An activity always needs one or more incoming sequences and can have

one or more outgoing sequences.

7.1.5 Decision

A decision is the structural element to work with the logic of a flow. Think of a

decision as an if-statement in Delphi.

Decision in flow

begin
 if (not (HasIniFile)) then
 begin
 HelpAndManualScreenshots.Activities.StringUtils.TStringUtils.St
ringParts();
 end
 else

62

Codolex

 © 2024 GDK Software

Activities

 ...
end;

Resulting code

When you double-click a decision, you can set its properties. Then choose the

variable on which the decision acts.

Next, set the value of the variable for each outgoing sequence. In this example,

the variable HasIniFile is a boolean, so there are two possibilities, indicated on the

outgoing sequences. Double-click on a sequence to set the sequence value.

When the variable is left empty, it's possible to make use of an expression.

The result of this expression must always be a boolean.

7.1.6 Merge

The merge activity can be used to bring the different lines within a flow back

together. Often, a decision activity is followed up by a merge activity.

63

Codolex

 © 2024 GDK Software

Activities

7.1.7 Loop

The loop activity offers the ability to iterate over lists. There are three different

loop types: While, For, and For..In.

A Loop variable name has to be defined for use inside the loop, the item from the

list will be parsed in this variable for use.

Variables defined outside the loop are usable inside the loop. However, variables

defined inside a loop are not usable outside the loop.

Within the loop itself, you have to define the (sub)flows.

64

Codolex

 © 2024 GDK Software

Activities

Loop in flow

begin
 for var i := 0 to Max do
 begin
 var IsLoaded: Boolean;
 IsLoaded := True;
 var CustomerViewList:
ICodolexList<Project.DataSource.Codolex.ICustomerView>;
 var SQL :=
 'SELECT CustomerView.* '+ sLineBreak +
 'FROM CustomerView AS CustomerView ';

 var Params: IDatabaseParams := TDatabaseParams.Create;

 CustomerViewList :=
Project.DataSource.Codolex.CustomerViewDataBroker.GetList(SQL,
Params);
 end;
end;

Resulting code

Break and Continue
Inside a loop, the break and continue activities can be used.

A break will stop the loop and continue the flow after the loop.

A continue will stop this iteration, and go to the next iteration if there is one

available

65

Codolex

 © 2024 GDK Software

Activities

Loop in flow

..
 for var String in StringList do
 begin
 if (String = value = null) then
 begin
 Break;
 end
 else
 begin
 Continue;
 end;
 end;
..

Resulting code

7.1.8 Exceptions

You can use Exceptions to catch possible errors in the application. You can add

exception handling to activities in Codolex. To do that, right-click on an activity in

a flow, and choose "Add exception".

Then click on one of the +points of the activity to create the exception.

66

Codolex

 © 2024 GDK Software

Activities

Make sure this point is connected to an alternative flow.

Save with exception handler

begin
 try
 HelpAndManualScreenshots.DataSource.Codolex.ShippersDataBroker.
Save(ShippersList);
 var Connection :=
CodolexFramework.DatabaseQueryProvider['Codolex'].Connection;
 Connection.Commit;
 except
 on E: Exception do
 begin
 var Connection1 :=
CodolexFramework.DatabaseQueryProvider['Codolex'].Connection;
 Connection1.Rollback;
 end;
 end;
end;

Resulting code

7.2 Core

The core activities provide the basis for handling flows, and supply them with

units of extra code

· Flow call

· Code snippet

· Use unit

67

68

68

67

Codolex

 © 2024 GDK Software

Activities

7.2.1 Flow call

A flow call can be used to call another flow inside a flow.

To use the call flow activity, the activity can be dragged into a flow.

Another option is to drag a flow from the Project Explorer, this will create a call

flow activity with the dragged flow selected.

Call flow

Begin
 CoreActivities.Parameters('', DatesList, Shippers);
end;

The parameters defined in the flow that is being called are listed in the call flow

properties.

The value of the parameters need to be defined to prevent errors. The value can

be static values or variables.

The class instance to use is optional for providing a class instance, this is

mandatory if the flow is from another flowclass

If the flow has a return variable, a return value field appears, where the name of

the result variable an be defined.

68

Codolex

 © 2024 GDK Software

Activities

Tip, always keep an eye on which flow calls which flow. It is possible to create a

loop, that will result in a stack overflow...

7.2.2 Code snippet

Should a developer encounter the situation that Codolex lacks functionality which

is available in Delphi, the code snippet can be used.

The code snippet parses code directly into the generated flow.

7.2.3 Use unit

Important sections of the Delphi class are the uses sections (interface and

implementation).

In the case that you need code from another unit available in Delphi, the use unit

provides the possibility to add a unit to the uses section.

69

Codolex

 © 2024 GDK Software

Activities

Example: Get the working directory with the function getCurrentDir from

System.Sysutils

Depending on what you need, you can select if the use must be added to interface

or implementation section. By default implementation is selected

7.3 Clipboard

A few activities that helps in getting value from or to the clipboard

· Clear clipboard

· Read from clipboard

· Write to clipboard

7.3.1 Write to clipboard

Write a value to the users clipboard with this activity

Uses Vcl.Clipbrd.TClipboard

Both a string and image can be selected

begin
 var ClipBoard := TClipBoard.Create;
 try
 ClipBoard.Open;
 ClipBoard.AsText := StringVariable;
 finally
 ClipBoard.Close;
 ClipBoard.Free;
 end;
end;

Resulting code when string is selected

71

70

69

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Clipbrd.TClipboard

70

Codolex

 © 2024 GDK Software

Activities

7.3.2 Read from clipboard

The read from clipboard value can be used to get a string or an image from the

clipboard

Uses Vcl.Clipbrd.TClipboard

By default a string is expected. To get an image, select the read image from

clipboard option. This will result in a binary variable.

Activity properties

begin
 var ClipBoardImage: ICodolexBinary;
 var ClipBoard := TClipBoard.Create;
 try
 ClipBoard.Open;

 var Image := TImage.Create(nil);
 var MemoryStream := TMemoryStream.Create;
 try
 ClipBoardImage := TCodolexBinary.Create;
 var Picture := Image.Picture;
 if ClipBoard.HasFormat(CF_PICTURE) then
 begin
 Picture.Assign(ClipBoard);
 Picture.SaveToStream(MemoryStream);
 ClipBoardImage.Stream.LoadFromStream(MemoryStream);
 end
 else if ClipBoard.HasFormat(CF_BITMAP) then
 begin

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Clipbrd.TClipboard

71

Codolex

 © 2024 GDK Software

Activities

 var BitMap := Picture.BitMap;
 BitMap.Assign(ClipBoard);
 BitMap.SaveToStream(MemoryStream);
 ClipBoardImage.Stream.LoadFromStream(MemoryStream);
 end;
 finally
 Image.Free;
 MemoryStream.Free;
 end;
 finally
 ClipBoard.Close;
 ClipBoard.Free;
 end;
end;

7.3.3 Clear clipboard

Use the activity to clear the clipboard. this can be helpful if multiple values are

being copied but you want to avoid flooding the clipboard of the user

Uses Vcl.Clipbrd.TClipboard

The activity has no properties to fill.

Activity in flow

..
 var ClipBoard := TClipBoard.Create;
 try
 ClipBoard.Open;
 ClipBoard.Clear;
 finally
 ClipBoard.Close;
 ClipBoard.Free;
 end;
..

Resulting code

7.4 Database

Codolex has an extensive entity framework. Although it is not mandatory to use

this within Codolex, this entity framework makes working with Codolex much

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Clipbrd.TClipboard

72

Codolex

 © 2024 GDK Software

Activities

faster. In addition, it is possible to use this framework in conjunction with a legacy

code structure. The database activities need a datasource with a database

connection to perform actions on a database.

· Get from DB

· Save object

· Delete object

· Transactions

· Execute command

7.4.1 Get from DB

The "Get from DB" activity is a convenient way to quickly retrieve data from a

database, independent of the type of database. The result of this activity is a list of

entities, which can be used in the flow. For example, this can be used in the loop

activity or the List Operation activities.

72

74

74

75

78

73

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var CustomersList:
ICodolexList<HelpAndManualScreenshots.DataSource.Codolex.ICustomers
>;
 var SQL :=
 'SELECT Customers.* '+ sLineBreak +
 'FROM Customers AS Customers ';

 var Params: IDatabaseParams := TDatabaseParams.Create;

 CustomersList :=
HelpAndManualScreenshots.DataSource.Codolex.CustomersDataBroker.Get
List(SQL, Params);
end;

Resulting code

To get started, select an entity from the search list. Codolex will fill in the basic

select statement. Using the "where, order by and limit results tabs" you can

specify the exact statement. The return value will be a list, or a single entity if you

select "first" at the Limit results tab.

74

Codolex

 © 2024 GDK Software

Activities

7.4.2 Save object

Save object to the database with the save object activity.

A variable entity can be selected to save.

Without transactions, the saved object is directly persistent in the database.

Activity properties

begin
 HelpAndManualScreenshots.DataSource.Codolex.ShippersDataBroker.Sa
ve(Shippers);
end;

Resulting code when shippers selected

When saving a new object (e.g. through create variable), the entity is translated to

a new record.

It's also possible to provide a list of entities instead of a single entity. All entities in

the list will be saved.

7.4.3 Delete object

Delete object that is present in a database.

75

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 HelpAndManualScreenshots.DataSource.Codolex.ShippersDataBroker.De
lete(Shippers);
end;

Resulting code

If an object is not present in a database, when parsing or creating entities for

example, this activity will not result in a change.

This activity will not free an object. To free an object from memory, see

[reference] for more information.

7.4.4 Transactions

Transactions provide a secure way of working with databases. There are three

possible activities: start, commit and rollback. Use these together with

Exceptions to ensure data is saved correctly. 65

76

Codolex

 © 2024 GDK Software

Activities

· Start transaction

· Commit transaction

· End transaction

7.4.4.1 Start transaction

A transaction on a database can be started by the 'start transaction' activity.

Activity properties

begin
 var Connection :=
CodolexFramework.DatabaseQueryProvider['Codolex'].Connection;
 Connection.StartTransaction;
end;

Resulting code

Select one of the available databases that can work with transactions in the

properties.

It is possible to start multiple transactions on one database.

7.4.4.2 Commit transaction

The 'Transaction commit' activity commits the database changes made in

between the start of a transaction and this activity.

76

76

77

77

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var Connection :=
CodolexFramework.DatabaseQueryProvider['Codolex'].Connection;
 Connection.Commit;
end;

Resulting code

Select one of the available databases that can work with transactions in the

properties.

When multiple transactions are started on a database, the last transaction will be

committed by this activity.

7.4.4.3 Rollback transaction

The 'Transaction rollback' activity rolls back the database changes made in

between the start of a transaction and this activity.

Activity properties

begin
 var Connection :=
CodolexFramework.DatabaseQueryProvider['Codolex'].Connection;
 Connection.RollBack;
end;

Resulting code

Select one of the available databases that can work with transactions in the

properties.

78

Codolex

 © 2024 GDK Software

Activities

When multiple transactions are started on a database, the last transaction will be

rolled backed by this activity.

7.4.5 Execute command

The execute command helps with retrieving data from the database faster.

The activity makes it possible to run a command on the database directly without

retrieving data.

This can be used to retrieve single fields of primitive data types.

Let's compare the method for retrieving a record count for example.

You could get the amount of records in a table by retrieving all records, and using

the list operation activity.

In the case you only want to know the count, and not perform any other action

with the records, this sollution would be performance heavy because it retrieves

all records.

The other option is to execute a count action on the database with the Execute

command activity.

79

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var shipperscount: Integer;
 var DatabaseQuery :=
CodolexFramework.DatabaseQueryProvider['Codolex']();
 DatabaseQuery.SQL.Text := 'SELECT COUNT(*) as shipperscount FROM
shippers';
 var Dataset := DatabaseQuery.Open;
 Dataset.First;
 var Field := Dataset.FindField('shipperscount');
 if Assigned(Field) then
 shipperscount := Field.AsInteger;
end;

Select a database, provide the command to execute, and define what the result

field name and type will be.

The activity will look for this result field and put the value in a result variable.

If multiple records are returned from the command, the first record will be taken

for the result.

7.5 Date/Time

The various activities in the Date/Time category can help you work with date and

time calculations, comparisons and conversions.

80

Codolex

 © 2024 GDK Software

Activities

Calculations

Check

Conversion

Decode

Encode

Format

From

Operation

Utils

Validation

7.5.1 Calculations

Date time calculations can be used to compare two dates, this can be done in 4

ways.

Uses System.DateUtils

Date Between +

Returns the amount of [timeframe] as integer between the 2 dates. The number is

always rounded down.

Available time frames are year, month, week, day, hours, minute, second,

millisecond.

80

82

83

85

86

87

88

89

91

92

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.WeeksBetween

81

Codolex

 © 2024 GDK Software

Activities

Example:

Time frame: week, Date from: 2024-01-01, Date to: 2024-02-23

begin
 CompareTime := WeeksBetween(DateTimeFrom, DateTimeFrom);
 var DialogResult: Integer;
end;

Result: 7

Date Span +

Date span works the same as date between, only return a double rounded down

to 2 decimals.

Example:

Time frame: week - Date from: 2024-01-01 - Date to: 2024-02-23

begin
 var CompareTime: Double;
 CompareTime := DaySpan(DateTimeFrom, DateTimeFrom);
end;

Result: 7.64

Compare Date Time

The compare calculation does not return an amount of something in between, but

only a positive or negative integer based on witch date is older.

If the date from is later than the date to, the result is positive.

Example:

Date from: 2024-01-01 - Date to: 2024-02-23

begin
 var CompareTime: Integer;
 CompareTime := CompareDateTime(DateTimeFrom, DateTimeFrom);
end;

Result: -1

Date from: 2024-02-23 - Date to: 2024-01-01

begin
 var CompareTime: Integer;
 CompareTime := CompareDateTime(DateTimeFrom, DateTimeFrom);
end;

Result: 1

If the results are the same, the result will be 0

Same Date Time

If you want to know if a date time is the same, and have the result in a directly

boolean, use the Same date time calculation.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DaySpan
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.CompareDateTime
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.SameDateTime

82

Codolex

 © 2024 GDK Software

Activities

Example:

Date from: 2024-01-01 - Date to: 2024-01-01

begin
 var CompareTime: Boolean;
 CompareTime := SameDateTime(DateTimeFrom, DateTimeFrom);
end;

Result: true

7.5.2 Check

The Check activity can be used to validate a few things about a date time value.

The return value will always be a boolean.

Uses System.DateUtils

IsAM

This check will validate if the given date time is in AM time range. 00:00 - 11:59 in

24hour notation.

Example:

Date to check: 2024-01-01

begin
 var Variable: Boolean;
 Variable := IsAM(DateToCheck);
end;

Result: True

IsPM

This check will validate if the given date time is in PM time range. 12:00 - 23:59 in

24hour notation.

Example:

Date to check: 2024-01-01

begin
 var Variable: Boolean;
 Variable := IsPM(DateToCheck);
end;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsAM
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsPM

83

Codolex

 © 2024 GDK Software

Activities

Result: False

InLeapYear

This check only looks at the year in a given date time, and will tell you if it's in a

leap year or not.

Example:

Date to check: 2024-01-01

begin
 var Variable: Boolean;
 Variable := IsInLeapYear(DateToCheck);
end;

Result: True

SameDay

This check will validate if it is the same day as another date. It has to be the exact

day (year, month, day). Time on the day does not matter.

Example:

Date to check: 2024-01-01 - Check date value: 2024-01-08

begin
 var Variable: Boolean;
 Variable := IsSameDay(DateToCheck, SameDateToCheck);
end;

Result: False

s

Today

This check will validate if it is the same day as today, so the outcome will be

dependent on the day the program runs.

Example:

Date to check: 2024-01-01

begin
 var Variable: Boolean;
 Variable := IsToday(DateToCheck);
end;

Result: False

7.5.3 Conversion

This activity converts a datetime variable into a string or integer variable,

depending on the method.

Uses System.DateUtils

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsInLeapYear
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsSameDay
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsToday
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils

84

Codolex

 © 2024 GDK Software

Activities

There are 5 options to convert to: Unix, ISO8601, JulianDate,

ModifiedJulianDate, Milliseconds.

The 'Use UTC time' option is available on some conversions to indicate to the

activity if the date provided is UTC, or the local time zone of the machine.

Unix

Returns an integer value of milliseconds between the given date and 1970-01-01

00:00:00 UTC.

Example:

Datetime value: 2024-01-01 00:00:00 - Use UTC time: true

begin
 var ConvertedTime: Int64;
 ConvertedTime := DateTimeToUnix(Date, True);
end;

Result: 1704067200

ISO8601

Returns a string of the date formatted following ISO8601 standards.

Example

Datetime value: 2024-01-01 00:00:00 - Use UTC time: false - Time zone: UTC+1

begin
 var ConvertedTime: string;
 ConvertedTime := DateToISO8601(Date, False);
end;

Result: 2025-01-01T00:00:00.000+01:00

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DateTimeToUnix
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DateToISO8601

85

Codolex

 © 2024 GDK Software

Activities

JulianDate

The Julian date is the number of days, including fractional days, since 4713 BC

January 1, Greenwich noon.

Example:

Datetime value: 2024-01-01 00:12:00

begin
 var ConvertedTime: Double;
 ConvertedTime := DateTimeToJulianDate(Date);
end;

Result: 2.460.311,00

ModifiedJulianDate

The modified Julian date is the number of days, including fractional days, since

Greenwich midnight on November 17, 1858. Modified Julian dates are based on

Julian dates, but adjusted to use midnight rather than noon as a starting point.

They use a more recent date as a starting point.

Example

Datetime value: 2024-01-01 00:12:00

begin
 var ConvertedTime: Double;
 ConvertedTime := DateTimeToModifiedJulianDate(Date);
end;

Result: 60.310,50

Milliseconds

The amount of milliseconds between the given date and 00-00-00 00:00:00 UTC

(0)

Example

Datetime value: 2024-01-01 00:00:00

begin
 var ConvertedTime: Int64;
 ConvertedTime := DateTimeToMilliseconds(Date);
end;

Result: 63839750400000

7.5.4 Decode

The decode datetime activity provides the possibility to get specific part(s) of a

date into integer(s).

Uses System.DateUtils.DecodeDateTime

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DateTimeToJulianDate
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DateTimeToModifiedJulianDate
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DateTimeToMilliseconds
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.DecodeDateTime

86

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 DecodeDateTime(Date, YearVar1, Month1, DayVar1, Hour1, Minute1,
Second1, MilliSecond1);
 YearVar := YearVar1;
 DayVar := DayVar1;
end;

Resulting code

The output variables are optional integer variables. After the activity the variable

will be filled with the corresponding value

7.5.5 Encode

The encode activity provides the option to create a date time variable and set the

values with integers.

Uses System.DateUtils.EncodeDateTime

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.EncodeDateTime

87

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var Date: TDateTime;
 var Year := 2024;
 var Month := 01;
 var Day := 01;
 var Hour := 00;
 var Minute := 00;
 var Second := 00;
 var MilliSecond := 0;
 Date := EncodeDateTime(Year, Month, Day, Hour, Minute, Second,
MilliSecond);
end;

Resulting code

The input fields are optional with the limit that one must be filled.

If no input is given, 0 is the default value.

7.5.6 Format

Format the date time into a string. The format can be customized with a string

and settings.

Uses System.SysUtils.FormatDateTime

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.FormatDateTime

88

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var Variable: string;
 Variable := FormatDateTime('yyyy-MM-dd hh:mm:ss', DateValue);
end;

Resulting code

Format
A value that represents the string output. It can be designed to your preferences

with the following options:

Embarcadero wiki FormatDateTime

FormatSettings value
An optional input to provide datetime format settings for this format.

Variable type: TFormatSettings

7.5.7 From

The date time from activity converts a string to a date time with the current local

date/time format.

Uses System.SysUtils.StrToDateTime

https://docwiki.embarcadero.com/Libraries/Athens/en/System.SysUtils.FormatDateTime
https://docwiki.embarcadero.com/Libraries/Sydney/en/System.SysUtils.TFormatSettings
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.StrToDateTime

89

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var Variable: TDateTime;
 Variable := StrToDateTime(FormatedDate, FormatSettings);
end;

Resulting code

Format settings can be used to deviate from the current local date/time format.

Variable type: TFormatSettings

7.5.8 Operation

Operations can be used to alter a date time and return a value or a new variable.

Uses System.DateUtils

Uses System.SysUtils

https://docwiki.embarcadero.com/Libraries/Sydney/en/System.SysUtils.TFormatSettings
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils

90

Codolex

 © 2024 GDK Software

Activities

Increase +

Increases a date with a given value for a given time frame.

Available time frames: year, month, week, day, hour, minute, second

The amount that needs to be changed must be an integer value

Example: Date value: 2023-11-01 00:00:00 - Time frame: month - Increase

number: 2

begin
 var IncreasedDate: TDateTime;
 IncreasedDate := IncMonth(Date, 2);
end;

Result: 2024-01-01 00:00:00

To decrease a date value, use the increase operation with a negative number.

Start Of +

Get the start of the given time frame of the given date time.

Available time frames: year, month, week, day, hour, minute, second

Example:

Date value: 2024-12-31 02:04:10 - Time frame: week

begin
 var StartOfDate: TDateTime;
 StartOfDate := StartOfTheWeek(Date);
end;

Result: 2024-12-30 00:00:00

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.IncMonth
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.StartOfTheWeek

91

Codolex

 © 2024 GDK Software

Activities

EndOf +

Get the end of the given time frame of the given date time.

Available time frames: year, month, week, day, hour, minute, second

Example:

Date value: 2023-07-23 02:04:10 - Time frame: year

begin
 var EndOfDate: TDateTime;
 EndOfDate := EndOfTheYear(Date);
end;

Result: 2023-12-31 23:59:59

7.5.9 Utils

Date time utils are onetime functions that helps with getting datetime standards

like now or tomorrow.

Uses System.DateUtils

Uses System.SysUtils

Activity properties

begin
 var Variable: TDateTime;
 Variable := Date;
end;

Resulting code

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.EndOfTheYear
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils

92

Codolex

 © 2024 GDK Software

Activities

Date

Gets the current date without the time of the day.

Now

Gets the current date time to the millisecond.

Time

Gets the current time stamp without the date part.

Tomorrow

Gets the start of tomorrow as date time.

Yesterday

Gets the start of the day from yesterday as date time.

7.5.10 Validation

This activity can be used to validate if a date is valid when given integer values for

its parts.

Uses System.DateUtils

There are six validation types that covers different parts of a date time.

The given values need to result in a valid date for the selected option.

The result is a boolean with value true if the given values are all falling in the valid

ranges for the option. otherwise the boolean is false.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.Date
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.Now
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.Time
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.Tomorrow
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.Yesterday
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils

93

Codolex

 © 2024 GDK Software

Activities

Date

Year, Month, Day.

Ranges:

Year= 1 - 9999.

Month= 1 - 12.

Day: 1 - N (number of days in the specified month).

Example:

 var IsValid: Boolean;
 var Year: Word := 2024;
 var Month: Word := 5;
 var Day: Word := 6;
 IsValid := IsValidDate(Year, Month, Day);

Result: True;

Date day

Year, day.

Ranges:

Year: 1 - 9999.

Day: 1 - 365 (366 in leap years).

Example:

 var IsValid: Boolean;
 var Year: Word := 2024;
 var Day: Word := 87;
 IsValid := IsValidDateDay(Year, Day);

Result: True;

Date month week

Year, Month, Week, Day.

Ranges:

Year: 1 - 9999.

Month: 1 - 12.

Week: 1 - N (number of weeks in the specified month).

Day: 1 - 7.

Example:

 var IsValid: Boolean;
 var Year: Word := 2024;
 var Month: Word := 5;
 var WeekOfMonth: Word := 10;
 var DayOfWeek: Word := 6;
 IsValid := IsValidDateMonthWeek(Year, Month, WeekOfMonth,
DayOfWeek);

Result: False;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsValidDate
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsValidDateDay
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsValidDateMonthWeek

94

Codolex

 © 2024 GDK Software

Activities

Date time

Year, Month, Day, Hour, Minute, Second.

Ranges:

Year: 1 - 9999.

Month: 1 - 12.

Day: 1 - N (number of days in the specified month).

Hour: 0-23, 24 is possible if minute and second are 0.

Minute: 0-59.

Second: 0-59.

Example:

 var IsValid: Boolean;
 var Year: Word := 2024;
 var Month: Word := 5;
 var Day: Word := 6;
 var Hour: Word := 7;
 var Minute: Word := 2;
 var Second: Word := 80;
 IsValid := IsValidDateTime(Year, Month, Day, Hour, Minute,
Second, MilliSecond);

Result: False;

Date week

Year, Week, Day

Ranges:

Year: 1 - 9999.

Week: 1 - N (number of weeks in the specified year).

Day: 1 - 7.

Example:

 var IsValid: Boolean;
 var Year: Word := 2024;
 var WeekOfYear: Word := 2;
 var DayOfWeek: Word := 6;
 IsValid := IsValidDateWeek(Year, WeekOfYear, DayOfWeek);

Result: True;

Time

Hour, Minute, Second

Ranges:

Hour: 0-23, 24 is possible if minute and second are 0.

Minute: 0-59.

Second: 0-59.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsValidDateTime
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsValidDateWeek
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.DateUtils.IsValidTime

95

Codolex

 © 2024 GDK Software

Activities

Example:

 var IsValid: Boolean;
 var Hour: Word := 18;
 var Minute: Word := 5;
 var Second: Word := 5;
 var MilliSecond: Word := 0;
 IsValid := IsValidTime(Hour, Minute, Second, MilliSecond);

Result: True;

7.6 Dialogs

Dialogs are useful for showing information to a user. Note that these activities

cannot be used in a service or back-end application, as displaying a dialog

interrupts the flow of an application and waits for user input.

OpenDialog

SaveDialog

ShowDialog

Show modal form

7.6.1 OpenDialog

The open dialog file can be used to let the user select file(s) from the explorer.

uses Vcl.Dialogs.TFileOpenDialog

95

97

98

99

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Dialogs.TFileOpenDialog

96

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var ReturnList: string;
 var IsExecuted: Boolean;
 var FileDialog := TFileOpenDialog.Create(nil);
 try
 IsExecuted := FileDialog.Execute;
 if IsExecuted then
 ReturnList := FileDialog.FileName;
 finally
 FileDialog.Free;
 end;

end;

Resulting code

The value of the 'store selected file(s) in' property is dependent on the option

'multiple files'. If 'multiple files' is selected, the property expects a string list to

store the selected paths in. Otherwise a string variable is expected to store the

selected path in.

If the 'Pick folders' option is selected, only folder can be selected.

The 'File/Path must exist' options are selectable for validation. If the options are

not selected, the user is able to type in a file/folder and select it, regardless of it

exists.

The 'Default file path' fills the selected file name for the user.

97

Codolex

 © 2024 GDK Software

Activities

7.6.2 SaveDialog

The save file dialog can be used to let the user select the location of a file that

needs to be stored/saved in the explorer.

uses Vcl.Dialogs.TFileSaveDialog

Activity properties

begin
 var ReturnList: string;
 var IsExecuted: Boolean;
 var FileDialog := TFileSaveDialog.Create(nil);
 try
 IsExecuted := FileDialog.Execute;
 if IsExecuted then
 ReturnList := FileDialog.FileName;
 finally
 FileDialog.Free;
 end;

end;

Resulting code

The value of the 'store selected file(s) in' property is dependent on the option

'multiple files'. If 'multiple files' is selected, the property expects a string list to

store the selected paths in. Otherwise a string variable is expected to store the

selected path in.

If the 'Pick folders' option is selected, only folder can be selected.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Dialogs.TFileSaveDialog

98

Codolex

 © 2024 GDK Software

Activities

The 'File/Path must exist' options are selectable for validation. If the options are

not selected, the user is able to type in a file/folder and select it, regardless of it

exists.

The 'Default file path' fills the selected file name for the user.

7.6.3 ShowDialog

The show dialog activity can be used to show information to the user and/or to

ask for user input.

uses Vcl.Dialogs.MessageDlg

Activity properties

begin
 var DialogResult: Integer;
 DialogResult := MessageDlg('This is a codolex dialog',
TMsgDlgType.mtInformation, [TMsgDlgBtn.mbOK, TMsgDlgBtn.mbIgnore],
0);
end;

Resulting code

The message text needs to be a string.

The message type defines the type of the dialog, 1 must be selected

The buttons provide options for the user, multiple options are possible. If no

option is selected, the Ok button is shown. This defines the result integer options.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Dialogs.MessageDlg

99

Codolex

 © 2024 GDK Software

Activities

Ok -> 1

Cancel -> 2

Yes -> 6

No -> 7

Retry -> 4

Ignore -> 5

It's also possible to use the show dialog activity without 'Return value'. The result

might not be needed in the case of just showing information. Turning of the

return variable prevents hint's from the RAD Studio editor about unused

variables.

7.6.4 Show modal form

Show modal form can be used to open any TCustomForm available in the project.

uses Vcl.Forms.TCustomForm.ShowModal

Activity properties

begin

https://docwiki.embarcadero.com/Libraries/Alexandria/en/Vcl.Forms.TCustomForm.ShowModal

100

Codolex

 © 2024 GDK Software

Activities

 var ModalResult: Integer;
 var Form := TFormClassName.Create(nil);
 try
 //code to initialize Form
 ModalResult := Form.ShowModal;
 finally
 Form.Free;
 end;
end;

Resulting code

Namespace and folder class must be used to select the TCustomForm class that

must be opened.

The initialization code will be added just before opening the form. The code can

be used to call a function/procedure to set values of the class.

The initialized form can be referenced with 'Form'.

The modal return value will be stored in an integer when provided.

7.7 Encoding

Use the encoding options to decode and encode variables to URLs, Base64 or

HTML Encoding code.

7.7.1 Decode

Decode a string with a decoding protocol

uses System.NetEncoding.TNetEncoding.Decode

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.TNetEncoding.Decode

101

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var DecodedString: string;
 var Encoding := TURLEncoding.Create;
 try
 DecodedString := Encoding.Decode(StringToDecode);
 finally
 Encoding.Free;
 end;
end;

resulting code

Possible encoding types are:

- URL

- HTML

- Base64

7.7.2 Encode

Encode a string with an encoding protocol

uses System.NetEncoding.TNetEncoding.Encode

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.TURLEncoding
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.THTMLEncoding
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.TBase64Encoding
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.TNetEncoding.Encode

102

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var EncodedString: string;
 var Encoding := {$IF CompilerVersion < 35.0}
TBase64Encoding.Create{$ELSE}TBase64StringEncoding.Create{$ENDIF};
 try
 EncodedString := Encoding.Encode(StringToEncode);
 finally
 Encoding.Free;
 end;
end;

resulting code

Possible encoding types are:

- URL

- HTML

- Base64

7.8 Entity conversion

You can easily create Codolex entities using JSON or Key/value pair or convert

Entities to these formats.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.TURLEncoding
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.THTMLEncoding
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.NetEncoding.TBase64Encoding

103

Codolex

 © 2024 GDK Software

Activities

Entity to JSON

JSON to entity

This activity can be used to convert an entity to a JSON string or to a JSON object.

The first return option in this activity is often used to pass an entity from Codolex

to another service. To continue working with JSON in other Delphi code, a JSON

object can be created. Please note that this instance is no longer managed by

Codolex, and that this must be manually freed.

Entity to key/value

Key/value to entity

An entity can also be converted into a key/value pair. This makes it possible to

store the key and value of an instance of an entity in a string or a TStringList.

Note that as with the JSON object conversion, it is important to free the

TStringList yourself. Codolex only returns the TStringList, and does not manage

the TStringList.

The other two activities (JSON to entity and key/value to entity) are the opposite

of those described above.

7.8.1 Entity to JSON

This activity can be used to convert an entity or list of entities to a JSON string or

to a JSON object.

uses System.JSON.TJSONObject

Activity properties

103

104

106

106

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.JSON.TJSONObject

104

Codolex

 © 2024 GDK Software

Activities

begin
 var JSON: string;

 var Adapter:
ICodolexEntityJSONAdapter<HelpAndManualScreenshots.DataSource.Codol
exDatasource.ITask>;
 Adapter := TTaskJSONAdapter.Create;
 var JSONObject := Adapter.MapFromEntity(Task);
 try
 JSON := JSONObject.Format;
 finally
 JSONObject.Free;
 end;
end;

resulting code

The first return option in this activity is often used to pass an entity from Codolex

to another service.

To continue working with JSON in other Delphi code, a JSON object can be

created. Please note that this instance is no longer managed by Codolex, and that

this must be manually freed.

7.8.2 JSON to entity

The JSON to entity activity can be used to parse a JSON string into an entity.

uses System.JSON.TJSONObject

Activity properties

begin

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.JSON.TJSONObject

105

Codolex

 © 2024 GDK Software

Activities

 var TaskFromJSON:
HelpAndManualScreenshots.DataSource.CodolexDatasource.ITask;
 TaskFromJSON := nil;
 var ResultCollection :=
TCodolexCollections.CreateList<HelpAndManualScreenshots.DataSource.
CodolexDatasource.ITask>;
 var ParsedJson := TJsonObject.ParseJSONValue(StringWithJSON,
True, True);
 try
 var Entity:
HelpAndManualScreenshots.DataSource.CodolexDatasource.ITask;
 var Adapter:
ICodolexEntityJSONAdapter<HelpAndManualScreenshots.DataSource.Codol
exDatasource.ITask>;
 Adapter := TTaskJSONAdapter.Create;

 if (ParsedJson is TJsonArray) then
 begin
 var JsonArray := ParsedJson as TJsonArray;
 var NbOfItems := JsonArray.Count;

 if (NbOfItems = 0) then
 Exit;

 for var ArrayElement in JsonArray do
 begin
 if not (ArrayElement is TJsonObject) then
 Continue;

 var ElementObject := ArrayElement.GetValue<TJsonObject>();

 Entity := Adapter.MapToEntity(ElementObject);

 ResultCollection.Add(Entity);
 end;
 end
 else if ParsedJson is TJsonObject then
 begin
 Entity := Adapter.MapToEntity(ParsedJson);

 ResultCollection.Add(Entity);
 end;

 finally
 ParsedJson.Free;
 TaskFromJSON := ResultCollection.First;
 end;
end;

resulting code

When the option multiple for expected results is selected, the activity does return

a list instead of a single entity.

106

Codolex

 © 2024 GDK Software

Activities

7.8.3 Entity to key/value

The entity to key/value activity converts an entity into a string list of key/value

pairs.

uses System.Classes.TStringList

Activity properties

begin
 var TaskKeyValues: TStringList;
 var StringList := TStringList.Create;
 StringList.AddPair('Description', Task.Description);
 StringList.AddPair('Done', Task.Done.Value.ToString);
 StringList.AddPair('DueDate', Task.DueDate);
 StringList.AddPair('Priority', Task.Priority);
 StringList.AddPair('TaskID', Task.TaskID.Value.ToString);
 TaskKeyValues := StringList;
end;

resulting code

The result can also be parsed into a string directly with the option return type

string.

7.8.4 Key/value to entity

The key/value to entity activity converts a TstringList or a string of key/value pairs

to an entity.

uses System.Classes.TStringList

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStringList
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStringList

107

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var TaskKeyValues: TStringList;
 var StringList := TStringList.Create;
 StringList.AddPair('Description', Task.Description);
 StringList.AddPair('Done', Task.Done.Value.ToString);
 StringList.AddPair('DueDate', Task.DueDate);
 StringList.AddPair('Priority', Task.Priority);
 StringList.AddPair('TaskID', Task.TaskID.Value.ToString);
 TaskKeyValues := StringList;
end;

resulting code

Both an string and TStringList are valid options for the variable to convert.

7.9 File system

The file system activities are all about reading and writing to the file system.

108

Codolex

 © 2024 GDK Software

Activities

Copy file/folder

Create file/folder

Delete file/folder

Exists file/folder

Get path part

Get system path

Listing file/folder

Move file/folder

Path validations

Read file

Write file

7.9.1 Copy file/folder

The copy/folder file activity helps with duplicating resources in the system folders

from one place to another.

uses System.IOUtils.TDirectory.Copy

uses System.IOUtils.TFile.Copy

Activity properties

begin
 if TDirectory.Exists('C:\...\Codolex\TestData') then
 TDirectory.Move('C:\...\Codolex\TestData', 'C:\...
\Codolex\TestDataMoved');
end;

Resulting code

108

109

111

111

112

115

116

116

118

123

123

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.Copy
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.Copy

109

Codolex

 © 2024 GDK Software

Activities

By default the folder option is selected. When a folder is copied, all nested files

and folders are also copied.

To move a single file, use the file option.

Source and destination path must be provided, and must be valid folder or file

paths, otherwise the generated code will result in an error.

Folder
The option 'do when folder exists' provides the ability to check if the source folder

exists before copying the folder.

If the destination folder does not exist, a folder will be created.

If the destination folder does exist, the nested files and folder will be copied into

the existing folder.

Files that are already present will not be overwritten.

File
For files, there are some extra options.

The option 'do when file exists' provides the ability to check if the source file

exists before copying the file.

The other options must be used exclusively and determines if the file must be

overwritten or skipped if it already exits.

7.9.2 Create file/folder

The create file/folder activity can be used to create files or folder on the local

system

uses System.IOUtils.TDirectory.CreateDirectory

uses System.IOUtils.TFile.AppendAllText

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.CreateDirectory
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.AppendAllText

110

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 TDirectory.Copy('C:\...\Codolex\TestData', 'C:\...
\Codolex\TestDataCopy');
end;

Resulting code

Folder
The option 'do when folder exists' provides the ability to check if there is already

a folder in place with the same name.

If this option is not set, and the folder is in place, the content of the folder will not

be deleted.

File
For files, there are some other options.

The options must be used exclusively and determines if the file must be

overwritten or skipped if it already exits.

If the file must be overwritten, an empty file is created and the old file is deleted.

If Skip and Overwrite are both not selected, the file will not be

created/overwritten when the file does exist.

111

Codolex

 © 2024 GDK Software

Activities

7.9.3 Delete file/folder

The delete file folder activity helps with deleting files or folders from the local

system.

Uses System.IOUtils.TDirectory.Delete

Uses System.IOUtils.TFile.Delete

ActivityProperties

begin
 TDirectory.Delete('C:\...\Codolex\TestData');
end;

Resulting code

Folder
The 'Do when folder exists' option provides a way to check if the folder exists

before trying to delete it.

When the recursive option is not checked, and the folder contains files or folders,

an EInOutError error will be thrown.

File
The 'Do when file exists' option provides a way to check if the file exists before

trying to delete it.

7.9.4 Exists file/folder

The exists file/folder activity returns a boolean if the given path contains a file or

folder.

101

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.Delete
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.Delete

112

Codolex

 © 2024 GDK Software

Activities

uses System.IOUtils.TDirectory.Exists

uses System.IOUtils.TFile.Exists

Activity properties

begin
 TDirectory.Delete('C:\...\Codolex\TestData');
end;

resulting code

The activity id is available for both file and folder. However, if a folder is found

when checking for a file (or the other way around), the result will be false.

7.9.5 Get path part

Get path part can be useful for getting different parts of a path you have. If you

want to get the file name only from a path for example.

uses System.IOUtils.TPath Methods

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.Exists
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.Exists
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath_Methods

113

Codolex

 © 2024 GDK Software

Activities

Activity properties

There are six different parts to retrieve from a path.

Directory name

Gets the directory name of the file path.

Example:

Filepath = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var PathPart: string;
 PathPart := TPath.GetDirectoryName(FilePath);
end;

Result = 'C:\Users\Username\Documents\Codolex'

File name

Gets the file name plus extension of the file path.

Example:

Filepath = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var PathPart: string;
 PathPart := TPath.GetFileName(FilePath);
end;

Result = 'Project.fcp'

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetDirectoryName
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetFileName

114

Codolex

 © 2024 GDK Software

Activities

File name without extension

Gets the file name without extension of the file path.

Example:

Filepath = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var PathPart: string;
 PathPart := TPath.GetFileNameWithoutExtension(FilePath);
end;

Result = 'Project'

Extension

Gets the extension of the file path.

Example:

Filepath = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var PathPart: string;
 PathPart := TPath.GetExtenstion(FilePath);
end;

Result = '.fcp'.

Full path

Gets the full path of the file path.

Example:

Filepath = 'C:\Users\Username\Documents\Codolex\Project.fcp'

begin
 var PathPart: string;
 PathPart := TPath.GetFullPath(FilePath);
end;

Result = 'C:\Users\Username\Documents\Codolex\Project.fcp'

Root path

Gets the root path of the file path.

Example:

Filepath = 'C:\Users\Username\Documents\Codolex\Project.fcp'

begin
 var PathPart: string;
 PathPart := TPath.GetPathRoot(FilePath);
end;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetFileNameWithoutExtension
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetExtension
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetFullPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetPathRoot

115

Codolex

 © 2024 GDK Software

Activities

Result = 'C:\'

Providing an incorrect path will not result in errors, but may have unexpected

outcomes.

7.9.6 Get system path

Get system path helps with getting the path for default folders on the system

uses System.IOUtils.TPath Methods

activity properties

begin
 var HomePath: string;
 HomePath := TPath.GetHomePath;
end;

resulting code

Default paths to get:

Alarm path / Shared alarm path

Camera path / Shared camera path

Cache path

Downloads path / Shared downloads path

Documents path / Shared documents path

Home path

Library path

Movies path / Shared movies path

Picture path / Shared picture path

Public path

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath_Methods
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetAlarmsPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedAlarmsPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetCameraPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedCameraPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetCachePath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetDownloadsPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedDownloadsPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetDocumentsPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedDocumentsPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetHomePath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetLibraryPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetMoviesPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedMoviesPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetPicturesPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedPicturesPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetPublicPath

116

Codolex

 © 2024 GDK Software

Activities

Ringtone path / Shared ringtone path

Temp path

Some options have the possibility to get a shared path. This offers the choice

between the path of the user, or the default path of the system

7.9.7 Listing file/folder

The listing file/folder activity list all the files or folder in a directory

uses System.IOUtils.TDirectory.GetDirectories

uses System.IOUtils.TDirectory.GetFiles

Activity properties

begin
 var FileList: ICodolexList<string>;
 FileList := TCodolexCollections.CreateList<string>;
 FileList.AddRange(TDirectory.GetFiles('C:\...
\Codolex\Documentation'));
end;

Resulting code

When the option 'Folder' is selected, only folders will be listed.

When the option 'File is selected, only files will be listed.

When a non-valid path is provided, a EDirectoryNotFoundException is thrown

7.9.8 Move file/folder

The move file/folder activity moves files and folders from one place to another on

the local file system

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetRingtonesPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetSharedRingtonesPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.GetTempPath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.GetDirectories
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.GetFiles
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.EDirectoryNotFoundException

117

Codolex

 © 2024 GDK Software

Activities

Uses System.IOUtils.TDirectory.Move

Uses System.IOUtils.TFile.Move

Activity properties

begin
 if TDirectory.Exists('C:\...\Codolex\TestData') then
 TDirectory.Move('C:\...\Codolex\TestData', 'C:\...
\Codolex\TestDataMoved');
end;

Resulting code

By default the folder option is selected. When a folder is moved, all nested files

and folders are also moved. After moving, the old folder is deleted.

To move a single file, use the file option.

Source and destination path must be provided, and must be valid folder or file

paths, otherwise the generated code will result in an error.

Folder
The option 'do when folder exists' provides the ability to check if the source folder

exists before moving the folder.

If the destination folder does not exist, a folder will be created.

If the destination folder does exist, the nested files and folder will be moved into

the existing folder.

Files that are already present will not be overwritten.

File
For files, there are some extra options.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.Move
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.Move

118

Codolex

 © 2024 GDK Software

Activities

The option 'do when file exists' provides the ability to check if the source file

exists before copying the file.

The option 'Skip when file exists' determines if the file must be overwritten or

skipped if it already exits.

7.9.9 Path validations

Path validations can be used to check on different parts if a path valid

uses System.IOUtils.TPath Methods

Activity properties

begin
 var Variable: Boolean;
 try
 var FileNamePart := TPath.GetFileName(PathToValidate);
 var PathPart := TPath.GetDirectoryName(PathToValidate);

 var IsValidFileName :=
TPath.HasValidFileNameChars(FileNamePart, False);
 var IsValidPathPart := TPath.HasValidPathChars(PathPart,
False);

 Variable := IsValidPathPart and IsValidFileName;
 except

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath_Methods

119

Codolex

 © 2024 GDK Software

Activities

 {$IF CompilerVersion > 34.0}
 on E: EInOutArgumentException do
 {$ELSE}
 on E: EArgumentException do
 {$ENDIF}
 Variable := False;
 end;
end;

Resulting code

The option "Use wild cards" will enable the wildcards (*) and (?) in the given

path/filename value

Available methods

Matches pattern

Has an extra string input for pattern

Returns True if the given value matches the specified pattern.

Example:

Path to validate = 'Project2024.fcp'.

Pattern to match = 'Project*.fcp'

begin
 var Variable: Boolean;
 Variable := TPath.MatchesPattern(PathToValidate, 'Project*.fcp',
False);
end;

Result = False

Drive exists

Checks whether the drive letter used in the given path actually exists.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\NonProject.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.DriveExists(PathToValidate);
end;

Result = False

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.MatchesPattern
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.DriveExists

120

Codolex

 © 2024 GDK Software

Activities

Has Extension

Checks whether a given file name has an extension part.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.HasExtension(PathToValidate);
end;

Result = True

Has valid filename chars

Checks whether a given file name contains only allowed characters.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.HasValidFileNameChars(PathToValidate, False);
end;

Result = False

Has valid path chars

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.HasValidPathChars(PathToValidate, False);
end;

Result = True

Is drive rooted

Checks whether a given path is absolute and starts with a drive letter.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.IsDriveRooted(PathToValidate);
end;

Result = True

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasExtension
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidFileNameChars
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidPathChars
https://docwiki.embarcadero.com/Libraries/https://docwiki.embarcadero.com/Libraries/Sydney/en/System.IOUtils.TPath.IsDriveRooted/en/System.IOUtils.TPath.IsDriveRooted

121

Codolex

 © 2024 GDK Software

Activities

Is extended prefix

Checks whether a given path has an extended prefix. Extended meaning longer

then the max path length of 260 chars.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.IsExtendedPrefixed(PathToValidate);
end;

Result = True

Is absolute path

Checks whether a given path is an absolute path .

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.IsPathRooted(PathToValidate);
end;

Result = True

Is relative path

Checks whether a given path is a relative path, in other words, not rooted to a

drive.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.IsRelativePath(PathToValidate);
end;

Result = True

Is UNC path

Checks whether a given path is in UNC (Universal Naming Convention) format.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.IsExtendedPrefixed
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.IsPathRooted
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.IsRelativePath
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.IsUNCPath

122

Codolex

 © 2024 GDK Software

Activities

 var Variable: Boolean;
 Variable := TPath.IsUNCPath(PathToValidate);
end;

Result = False

is UNC rooted

Checks whether the given path is UNC-rooted, where UNC stands for Universal

Naming Convention.

Example:

Path to validate = 'C:\Users\Username\Documents\Codolex\Project.fcp'.

begin
 var Variable: Boolean;
 Variable := TPath.IsUNCRooted(PathToValidate);
end;

Result = False

Is valid filename chars

Checks whether a given character is allowed in a file name.

Example:

String to validate = 'C'.

begin
 var Variable: Boolean;
 Variable := TPath.HasValidFileNameChars(PathToValidate[1]);
end;

Result = True

Is valid path chars

Checks whether a given character is allowed in a path string.

Example:

String to validate = 'C'.

begin
 var Variable: Boolean;
 Variable := TPath.HasValidPathChars(PathToValidate[1]);
end;

Result = True

Is valid path

Checks whether a given value name contains only allowed characters for file and

path.

Uses Has valid filename chars and Has valid path chars

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.IsUNCRooted
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidFileNameChars
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidPathChars
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidFileNameChars
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidPathChars

123

Codolex

 © 2024 GDK Software

Activities

Is valid and existing path

Checks whether a given value name contains only allowed characters for file and

path, and if the path actually exists.

Uses Has valid filename chars and Has valid path chars plus Directory exists

or File exists

7.9.10 Read file

The read file activity can be used to read content from a file

uses System.IOUtils.TFile.ReadAllText

uses System.Classes.TStrings.LoadFromFile

Activity properties

begin
 var FileContent: string;
 FileContent := TFile.ReadAllText(FileName);
end;

Resulting code

Depending on Data type, the return value is a string or binary.

7.9.11 Write file

The write file activity can be used to write or append data to a file

uses System.IOUtils.TFile.WriteAllText and System.IOUtils.TFile.AppendAllText

uses System.Classes.TStrings.SaveToFile

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidFileNameChars
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TPath.HasValidPathChars
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TDirectory.Exists
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.Exists
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.ReadAllText
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStrings.LoadFromFile
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.WriteAllText
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.AppendAllText
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStrings.SaveToFile

124

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 BinaryValue.Stream.Position := 0;
 BinaryValue.Stream.SaveToFile(FileName);
end;

Resulting code

If there is no existing file at the given file path, a new file will be created.

It's possible to provide a binary or string value.

When using a string value, the option 'Append content' is also available. This

determines if the string should be added at the end of the file, or if the existing

file should be overridden.

7.10 Hashing

Hashing converts data into a fixed-size string of characters, typically for security

and efficiency. It ensures data integrity, speeds up data retrieval, enables safe

password storage by turning readable data into unreadable strings, and helps in

quickly comparing large datasets by comparing smaller hashed values instead.

Codolex supports MD5, SHA1 and SHA2 hashing algoritms.

Hash file 125

125

Codolex

 © 2024 GDK Software

Activities

Hash string/bytes

7.10.1 Hash file

The hash file activity hashes the contents of a file and returns it as string or bytes

array variable

uses System.Hash

Activity properties

begin
 var HashedFile: string;
 HashedFile := THashMD5.GetHashStringFromFile(FileName);
end;

Resulting code

Supported hashing types

- MD5

- SHA1

- SHA2_224

- SHA2_256

- SHA2_384

- SHA2_521

- SHA2_521_224

- SHA2_512_256

126

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Hash

126

Codolex

 © 2024 GDK Software

Activities

7.10.2 Hash string/bytes

The hash file activity hashes the contents of a string variable and returns it as

string or bytes array variable

uses System.Hash

Activity properties

begin
 var Variable: TBytes;
 Variable := THashMD5.GetHashBytes(Content);
end;

Resulting code

Supported hashing types

- MD5

- SHA1

- SHA2_224

- SHA2_256

- SHA2_384

- SHA2_521

- SHA2_521_224

- SHA2_512_256

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Hash

127

Codolex

 © 2024 GDK Software

Activities

7.11 Import/Export

The Import/Export section contains activities for importing and exporting data

CSV export

CSV import

7.11.1 CSV export

The CSV export activity can be used to export a list of entities to a CSV file.

Uses System.Classes.TStringList

Uses System.Classes.TStrings.SaveToFile

Activity properties

begin
var CSVList := TStringList.Create;
 try
 CSVList.Add('ProductID,ProductName,SupplierID,CategoryID,Quanti
tyPerUnit,UnitPrice,UnitsInStock,UnitsOnOrder,ReorderLevel,Disconti
nued');
 for var Entity in ProductsList do
 begin
 var CSVValue: string;

127

128

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStringList
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStrings.SaveToFile

128

Codolex

 © 2024 GDK Software

Activities

 CSVValue := string.Join(',', [Entity.ProductID.Value,
Entity.ProductName.Value, Entity.SupplierID.Value,
Entity.CategoryID.Value, Entity.QuantityPerUnit.Value,
Entity.UnitPrice.Value, Entity.UnitsInStock.Value,
Entity.UnitsOnOrder.Value, Entity.ReorderLevel.Value,
Entity.Discontinued.Value]);
 CSVList.Add(CSVValue);
 end;
 CSVList.SaveToFile(ExportFileName);
 finally
 CSVList.Free;
 end;
end;

Resulting code

The separator value is a ',' by default, but can be changed to other separators like

';'.

The associations of entities are not included in the export, only the field for

association id is included if there is one

Known issue

Exclude fields is not implemented in the current version

7.11.2 CSV import

The CSV Import activity can be used to import entities directly from a csv file

Uses System.Classes.TStringList

Uses System.IOUtils.TFile.ReadAllLines

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Classes.TStringList
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IOUtils.TFile.ReadAllLines

129

Codolex

 © 2024 GDK Software

Activities

Activity properties

var ProductsList:
ICodolexList<HelpAndManualScreenshots.DataSource.Codolex.IProducts>
;
 var CSVLines := TFile.ReadAllLines(ImportFileName);

 var ColumnList := TStringList.Create;
 try
 ColumnList.Delimiter := ',';
 ColumnList.StrictDelimiter := True;
 ColumnList.DelimitedText := CSVLines[0];
 for var ColumnIndex := 0 to ColumnList.Count -1 do
 ColumnList[ColumnIndex] := Trim(ColumnList[ColumnIndex]);

 ProductsList :=
TCodolexList<HelpAndManualScreenshots.DataSource.Codolex.IProducts>
.Create;

 var IsFirstLine := True;
 for var Line in CSVLines do
 begin
 if IsFirstLine then
 begin
 IsFirstLine := False;
 Continue;
 end;

 var Values := Line.Split([',']);
 var CSVEntity:
HelpAndManualScreenshots.DataSource.Codolex.IProducts;

130

Codolex

 © 2024 GDK Software

Activities

 CSVEntity :=
HelpAndManualScreenshots.DataSource.Codolex.TProducts.Create;
 var FieldCount := Length(Values);

 var FieldPos := ColumnList.IndexOf('ProductID');
 if (FieldPos > -1) and (FieldPos < FieldCount) then
 CSVEntity.ProductID := Values[FieldPos].ToInteger;

 ...

 FieldPos := ColumnList.IndexOf('Discontinued');
 if (FieldPos > -1) and (FieldPos < FieldCount) then
 CSVEntity.Discontinued := Values[FieldPos];

 ProductsList.Add(CSVEntity);
 end;
 finally
 ColumnList.Free;
 end;

Resulting code

The separator value is a ',' by default, but can be changed to other separators like

';'.

The associations of entities are not included in the import, the association can be

set after an import with id value.

7.12 IniFile

To use ini files, it is necessary to have an entity corresponding to the ini file

structure. In the Ini file read activity, default values can be specified if the fields do

not occur in the ini file.

IniFile Datasource

IniFile Read

IniFile Write

7.12.1 IniFile Read

The IniFile Read activity can be used to get data from a local ini file into a variable.

uses System.IniFiles.TIniFile

51

130

131

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IniFiles.TIniFile

131

Codolex

 © 2024 GDK Software

Activities

Activity properties

var IniFile := TIniFile.Create(IniFilePath);
 try
 keys.APIKey1 := IniFile.ReadString('keys', 'APIKey1', '123');
 keys.APIKey2 := IniFile.ReadString('keys', 'APIKey2', '');
 finally
 IniFile.Free;
 end;

Resulting code

The activity expects a path to the ini file, and variable to store the values in.

It's recommended to create an inifile datasource to get the variable to store the

ini values in.

More information about the datasource: IniFile Datasource

7.12.2 IniFile Write

The IniFile Write activity can be used to store data in a local ini file from a variable

uses System.IniFiles.TIniFile

51

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.IniFiles.TIniFile

132

Codolex

 © 2024 GDK Software

Activities

Activity properties

var IniFile := TIniFile.Create(IniFilePath);
 try
 IniFile.WriteString('keys', 'APIKey1', keys.APIKey1);
 IniFile.WriteString('keys', 'APIKey2', keys.APIKey2);
 finally
 IniFile.Free;
 end;

Resulting code

The activity expects a path to the ini file, and variable with values to write from.

Keep in mind that all values get updated, even if a value is empty.

It's recommended to create an inifile datasource to get the variable to write from.

More information about the datasource: IniFile Datasource

7.13 JSON

The JSON activities are available to handle objects of TJSONValue type.

This allows you to work with the JSON objects directly instead of handling the

json as raw string.

This could be helpfull for traversing the data before importing it into entities, or

adding data to the JSON after it's been parsed from an entity.

51

133

Codolex

 © 2024 GDK Software

Activities

TextToJSON

JSON to text

Get JSON value

For more information about JSON

JSON datasource

Entity conversion

7.13.1 Text to JSON

The text to JSON Activity parses a string into a TJSONValue object.

uses System.JSON.TJSONObject.ParseJSONValue

Activity properties

begin
 var JSON: TJSONValue;
 JSON := TJsonObject.ParseJsonValue('{"menu": {' +
' "id": "file",' +
' "value": "File",' +
' "popup": {' +
' "menuitem": [' +
' {"value": "New", "onclick": "CreateNewDoc()"},' +
' {"value": "Open", "onclick": "OpenDoc()"},' +
' {"value": "Close", "onclick": "CloseDoc()"}' +

133

134

134

52

102

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.JSON.TJSONObject.ParseJSONValue

134

Codolex

 © 2024 GDK Software

Activities

']' +
' }' +
'}}');
end;

Resulting code

7.13.2 JSON to text

Use the JSON to Text activity to format a JSONValue to a string

uses System.JSON.TJSONValue

Activity properties

begin
 var JSONText: string;
 JSONText := JSON.Format;
end;

Resulting Code

7.13.3 Get JSON value

The get JSON Value activity can be used to get a variable from an existing JSON

Value.

uses System.JSON.TJSONValue

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.JSON.TJSONValue
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.JSON.TJSONValue

135

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var MenuJSON: TJSONValue;
 MenuJSON := JSON.GetValue<TJSONValue>('menu');
end;

Resulting code

The 'Key name with value' must be a attribute of the provided JSON Value.

The data type could be any data type if the value of the attribute can be parsed

into an object.

e.g.

begin
 var JSON: TJSONValue;
 JSON := TJsonObject.ParseJsonValue('{"menu": {' +
' "id": "other",' +
' "value": "File",' +
' "popup": {' +
' "menuitem": [' +
' {"value": "New", "onclick": "CreateNewDoc()"},' +
' {"value": "Open", "onclick": "OpenDoc()"},' +
' {"value": "Close", "onclick": "CloseDoc()"}' +
']' +
' }' +
'}}');

136

Codolex

 © 2024 GDK Software

Activities

 var menu:
HelpAndManualScreenshots.DataSource.JSONMenuDataSource.Imenu;
 var JsonAdapter:
ICodolexEntityJSONAdapter<HelpAndManualScreenshots.DataSource.JSONM
enuDataSource.Imenu>;
 JsonAdapter := TmenuJSONAdapter.Create;
 var KeyNameValue := JSON.GetValue<TJsonValue>('menu');
 var JsonValue := JsonAdapter.MapToEntity(KeyNameValue);
 menu := JsonValue;
 var DialogResult: Integer;
 DialogResult := MessageDlg(menu.id, TMsgDlgType.mtInformation,
[TMsgDlgBtn.mbOK], 0);
end;

7.14 Math

the Math activities are specific activities that could help with common

calculations.

Calculation

Checks

Finance

Rounding

7.14.1 Calculation

The calculation activity contains a set of math functions.

Uses System

Uses System.Math

136

140

143

148

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math

137

Codolex

 © 2024 GDK Software

Activities

Activity properties

possible calculations:

Absolute value

Needs an interger and returns the absolute value

Example:

IntegerValue = -10

begin
 var ResultValue: Int64;
 ResultValue := Abs(IntegerValue);
end;

Result = 10

Integer division

Needs a base value, a divisor, and value to put the remainder in, returns the result

of the integer division

Example:

DivisorValue = 3

IntegerValue = 1000

begin
 var ResultValue: Int64;
 var WordRemainder: Word;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Abs
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.DivMod

138

Codolex

 © 2024 GDK Software

Activities

 var WordResult: Word := 0;
 DivMod(IntegerValue, DivisorValue, WordResult, WordRemainder);
 ResultValue := WordResult;
 Remainder := WordRemainder;
end;

ResultValue = 333

Remainder = 1

Average value

Needs an array of Single, Extended or Double. Returns the average of all values in

an array.

Example:

SingleArray = [0,1,2,3,4,5]

begin
 var ResultValue: Double;
 ResultValue := Mean(SingleArray);
end;

ResultValue = 2.5

Power

Raises Base to any Exponent power.

Example:

IntegerValue = 3

DecimalValue = 7.5

begin
 var ResultValue: Double;
 ResultValue := Power(DecimalValue, IntegerValue);
end;

ResultValue = 421.875

Squared

Needs an integer and returns the squared value.

Example:

DecimalValue = 7.5

begin
 var ResultValue: Double;
 ResultValue := Sqr(DecimalValue);
end;

ResultValue = 56.25

Square root

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Mean
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Power
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Sqr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Sqrt

139

Codolex

 © 2024 GDK Software

Activities

Needs an integer and returns the square root value.

Example:

DecimalValue = 56.25

begin
 var ResultValue: Double;
 ResultValue := Sqrt(DecimalValue);
end;

ResultValue = 7.5

Log base 10

Calculates log base 10 of the provided integer or double.

Example:

IntegerValue = 100

begin
 var ResultValue: Double;
 ResultValue := Log10(IntegerValue);
end;

ResultValue = 2

Log base 2

Calculates log base 2 of the provided integer or double.

Example:

IntegerValue = 16

begin
 var ResultValue: Double;
 ResultValue := Log2(IntegerValue);
end;

ResultValue = 4

Log base N

Calculates log base (provided base integer) of the provided integer or double.

Example:

IntegerValue = 27

BaseValue = 3

begin
 var ResultValue: Double;
 ResultValue := LogN(BaseValue, IntegerValue);
end;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Log10
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Log1
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.LogN

140

Codolex

 © 2024 GDK Software

Activities

ResultValue = 3

Natural logarithm

Returns the value of Log to the natural base (2.718281828459).

Example:

IntegerValue = 20

begin
 var ResultValue: Double;
 ResultValue := Ln(IntegerValue);
end;

ResultValue = 2.9995732...

Natural logarithm of (X+1)

Returns the natural log of (X+1)

Example:

IntegerValue = 19

begin
 var ResultValue: Double;
 ResultValue := Ln(IntegerValue);
end;

ResultValue = 2.9995732...

Natural logariths raised to power

Returns the exponential of a provided number to the natural base

(2.718281828459).

Example:

IntegerValue = 5

begin
 var ResultValue: Double;
 ResultValue := Exp(IntegerValue);
end;

ResultValue = 148,413

7.14.2 Checks

The Checks activity returns a boolean value for a validation check of a number.

uses System.Math

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Ln
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.LnXP1
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Exp
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math

141

Codolex

 © 2024 GDK Software

Activities

Activity properties

Possible checks:

Is Infinite

Indicates when a variable represents an infinite value.

Example:

IntegerValue = 10

begin
 var CheckValue: Boolean;
 CheckValue := IsInfinite(IntegerValue);
end;

Result = False

Is not a number

Indicates when a variable represents a 'Not a number' (Nan) value.

Example:

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.IsInfinite
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.IsNan

142

Codolex

 © 2024 GDK Software

Activities

IntegerValue = 10

begin
 var CheckValue: Boolean;
 CheckValue := IsNan(IntegerValue);
end;

Result = False

Is zero

Indicates when a floating-point variable or expression evaluates to zero with a

deviation.

Example:

DecimalValue = 0.5

Deviation = 1

begin
 var CheckValue: Boolean;
 CheckValue := IsZero(DecimalValue, 1);
end;

Result = True

Is same value

Indicates whether two floating-point values are equal. with a possible deviation.

Example:

IntegerValue =2

DecimalValue = 0.5

Deviation = 1

begin
 var CheckValue: Boolean;
 CheckValue := SameValue(DecimalValue, IntegerValue, 1);
end;

Result = False

Is positive value

Indicates whether a numeric value is positive.

Example:

IntegerValue = 10

begin
 var CheckValue: Boolean;
 var SignValue := Sign(IntegerValue);
 CheckValue := SignValue = TValueSign(PositiveValue);

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.IsZero
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.SameValue
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Sign

143

Codolex

 © 2024 GDK Software

Activities

end;

Result = True

Is negative value

Indicates whether a numeric value is negative.

Example:

IntegerValue = 10

begin
 var CheckValue: Boolean;
 var SignValue := Sign(IntegerValue);
 CheckValue := SignValue = TValueSign(NegativeValue);
end;

Result = False

In range

Indicates whether a value falls within a specified range.

Example:

IntegerValue = 2

MinRange = 1

MaxRange = 3

begin
 var CheckValue: Boolean;
 CheckValue := InRange(IntegerValue, 1, 3);
end;

Result = True

Providing a higher minimum than maximum is possible, but is also never true.

7.14.3 Finance

The finance activity includes the financial activities delphi has to offer.

uses Business And Finance Routines

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Sign
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.InRange
http://docwiki.embarcadero.com/RADStudio/Alexandria/en/Business_And_Finance_Routines

144

Codolex

 © 2024 GDK Software

Activities

Activity properties

Possible financial functions:

Double declining balance

Calculates the depreciation of an asset using the double-declining balance

method.

Example:

Cost = 5000

Salvage = 1000

Life expectancy = 5

Period = 2

begin
 var Finance: Double;
 Finance := DoubleDecliningBalance(Cost, Salvage, 5, 2);
end;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.DoubleDecliningBalance

145

Codolex

 © 2024 GDK Software

Activities

Result = 2400

Future investment value

Calculates the future value of an investment.

Example:

Present value = 1000

Payment = 100

Rate value = 0.05

Period = 5

Payment time = End of period

begin
 var Finance: Double;
 Finance := FutureValue(RateValue, 5, Payment, PresentValue,
ptEndOfPeriod);
end;

Result = -1828.84 (value is negative to symbolize what you could withdraw)

Interest rate

Returns the interest rate required to increase PresentValue to FutureValue.

Present value = 1000

Payment = 0

Future value = -10000 (needs to be negative to symbolize what you could

withdraw)

Period = 10

Payment time = End of period

begin
 var Finance: Double;
 Finance := InterestRate(RateValue, 5, Payment, PresentValue,
ptEndOfPeriod);
end;

Result = 0.259...

Internal rate of return

Calculate the IRR of a cashflow with a guess in case of positive and negative

cashflows.

CashFlow = [-1000,250,250,250,250,250,250] (First value is negative to

symbolize the investment)

GuessValue = 0.2

begin
 var Finance: Double;
 Finance := InternalRateOfReturn(GuessValue, CashFlow);

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.FutureValue
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.InterestRate
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.InternalRateOfReturn

146

Codolex

 © 2024 GDK Software

Activities

end;

Result = 0.12978...

Loan interest

Calculate the portion of a loan payment that reflects the interest.

Present value = 1000

Future value = 500

Period = 3

number of periods = 5

Rate = 0.05

Payment time = End of period

begin
 var Finance: Double;
 Finance := InterestPayment(Rate, 3, 5, PresentValue,
FutureValue, ptEndOfPeriod);
end;

Result = -22.175...

Investment periods

Calculates the number of payment periods required for an investment of

PresentValue to reach a value of FutureValue

Present value = 1000

Future value = -2000 (needs to be negative to symbolize what you could

withdraw)

Payment = 50

Rate = 0.10

Payment time = End of period

begin
 var Finance: Double;
 Finance := NumberOfPeriods(Rate, Payment, PresentValue,
FutureValue, ptStartOfPeriod);
end;

Result = 5.22335...

Fully amortized payment

Calculates the Payment needed for the amount of periods to get from present

value to future value

Present value = 1000

Future value = -2000 (needs to be negative to symbolize what you could

withdraw)

Periods = 5

Rate = 0.10

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.InterestPayment
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.NumberOfPeriods
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Payment

147

Codolex

 © 2024 GDK Software

Activities

Payment time = End of period

begin
 var Finance: Double;
 Finance := NumberOfPeriods(Rate, 5, PresentValue, FutureValue,
ptEndOfPeriod);
end;

Result = 63.79748...

Periodical payment

Calculates the principal amount from a full payment after a given period in a

number of periods.

Present value = 0

Future value = -100 (needs to be negative to symbolize what you could

withdraw)

Periods = 5

period = 3

Rate = 0.10

Payment time = End of period

begin
 var Finance: Double;
 Finance := PeriodPayment(Rate, 3, 5, PresentValue, FutureValue,
ptEndOfPeriod);
end;

Result = 19.81949

Present investment value

Calculates the present value when the future value after an amount of periods is

know.

Future value = -1000 (needs to be negative to symbolize what you could

withdraw)

Periods = 3

Rate = 0.10

payment = 50

Payment time = ptStartOfPeriod

begin
 var Finance: Double;
 Finance := PresentValue(Rate, 3, PaymentValue, FutureValue,
ptStartOfPeriod);
end;

Result = 614,53794

Net present investment value

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.PeriodPayment
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.PresentValue
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.NetPresentValue

148

Codolex

 © 2024 GDK Software

Activities

Calculates the net present value for an investment, expected cashflows, and a rate

CashFlow = [-1000,400,400,400,400];

Rate =0.20

begin
 var Finance: Double;
 Finance := NetPresentValue(Rate, CashFlow, ptStartOfPeriod);
end;

Result = 35.49...

7.14.4 Rounding

The rounding activities can be used to round numerical values into integers or

specified decimals

Activity properties

Possible rounding options

Ceil

Rounds up to an integer.

Example:

DecimalValue = 3.3

begin

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Ceil

149

Codolex

 © 2024 GDK Software

Activities

 var RoundingValue: Integer;
 RoundingValue := Ceil(DecimalValue);
end;

Result = 4

Floor

Rounds down to an integer.

Example:

DecimalValue = 3.3

begin
 var RoundingValue: Integer;
 RoundingValue := Floor(DecimalValue);
end;

Result = 3

Fraction parts

Returns the part after the ',' from a decimal.

Example:

DecimalValue = 3.3

begin
 var RoundingValue: Integer;
 RoundingValue := Frac(DecimalValue);
end;

Result = 0.3

round to tens

Rounds a floating-point value to a specified power of ten.

The 'Digits to round' will be a positive integer in the RoundTo function.

Example:

DecimalValue = 1234.1234

Digets to round = 2

begin
 var RoundingValue: Double;
 RoundingValue := RoundTo(DecimalValue, 2);
end;

Result = 1200

Round to decimals

Rounds a floating-point value to a specified digit.

The 'Digits to round' will be a negative integer in the RoundTo function

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.Floor
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Frac
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.RoundTo
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Math.RoundTo

150

Codolex

 © 2024 GDK Software

Activities

Example:

DecimalValue = 1234.1234

Digits to round = 2

begin
 var RoundingValue: Double;
 RoundingValue := RoundTo(DecimalValue, 2);
end;

Result = 1234.12

Trunc

Drops everething behind the ',' part of a decimal without rounding.

Example:

DecimalValue = -3.56

begin
 var RoundingValue: Double;
 RoundingValue := Trunc(DecimalValue);
end;

Result = -3

Integer part

Returns the part before the ',' from a decimal.

Example:

DecimalValue = 3.6

begin
 var RoundingValue: Double;
 RoundingValue := Trunc(DecimalValue);
end;

Result = -3

7.15 Rest operation

The Rest operation activity can be used for a multitude of rest calls to send or

retrieve data

Uses System.Net.HttpClientComponent.TNetHTTPClient

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Trunc
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Int
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Net.HttpClientComponent.TNetHTTPClient

151

Codolex

 © 2024 GDK Software

Activities

Activity poperties

begin
 var Response: string;
 var Client := TNetHTTPClient.Create(nil);
 try
 var HttpResponse :=
Client.GET('http://worldtimeapi.org/api/timezone/Europe/Amsterdam',
nil, []);
 if (HttpResponse.StatusCode > 199) and (HttpResponse.StatusCode
< 300) then
 Response := HttpResponse.ContentAsString
 else
 raise ENetException.CreateFmt('%d %s%s%s',
[HttpResponse.StatusCode, HttpResponse.StatusText, sLineBreak,
HttpResponse.ContentAsString]);
 finally
 Client.Free;
 end;
end;

Resulting code

The example shows a simple GET call to the WorldTimeAPI, but the activity offers

a lot more options, let's go over them one by one.

Click here for an extensive explanation of this activity on our YouTube channel.

https://youtu.be/fJr8Hg7R-eE?si=2plT1_yB-OJltWRX

152

Codolex

 © 2024 GDK Software

Activities

Operation

The HTTP Method that should be used in the call.

Possible options:

GET to retrieve information,

POST to send new information

DELETE to delete information stored elsewhere

PUT To update information stored elsewhere

PATCH to partially update information stored elsewhere.

Content-type

The type of content for the current call, in get calls this would be the content that

the client can accept, in post calls this would be the type of content included in the

request.

The list of possible options

URL

The URL to call, this can be a string, variable or expression, in the parameter

section is explained how to use a string with parameters.

Body

The content of the current request this can be a string, variable or expression.

Parameters

A parameter can be added with a name and value.

There are 4 different types of parameters that can be used at the moment

1. Header

Adds a TNetHeader to the call.

2. Body (not allowed in GET Methods)

Adds a form data field to the request

3. Query

Adds a query paramter to the URL of the request

4. URL-Segment

Repaleces the par '{param name}' in the url with the value of the param.

e.g.

'http://worldtimeapi.org/api/timezone/{area}/Amsterdam' ->
var HttpResponse := Client.GET('http://worldtimeapi.org/api/timezone/'
+ 'Europa' + '/Amsterdam', nil, []);

http://www.iana.org/assignments/media-types/media-types.xhtml
http://worldtimeapi.org/api/timezone/{area}/Amsterdam

153

Codolex

 © 2024 GDK Software

Activities

Authentication

Option to include basic auth into the request with username and password.

Timeout

The maximum amount of time the rest call should wait for respond in

milliseconds (Default 60000)

Connection

The secure protocols option of the request. Multiple options are possible.

Possible options: SSL v2, SSL v3, TLS v1.0, TLS v1.1, TLS v1.2, TLS v1.3

Pagination
Many API's that handle a lot of data use pagination. a part of the result given, with

an indicator for more results.

To help you with retrieving data from these kind of API's Codolex offers the

pagination tab. There are two ways to handle pagination, with record/rows

numbers, and with page numbers.

Loop until end of pages/records can be turned on to retrieve all data in one

activity. Leave this option off when retrieving only one page, or when retrieving

multiple pages manualy for partial retrieval.

1. Records/rows

Request param for page size is the amount of records you want to receive

from the API in one page. The first field is an editor for the name is has to have in

the request, and the second for the value.

Request param for row/record number is the starting point from where the

records should be returned, so if you already have the records somewhere, and

you only want the new records, you can provide the amount of records you

already have to receive new records. To receive all records, you should fill a 0 for

the value. The first field is an editor for the name is has to have in the request, and

the second for the value.

154

Codolex

 © 2024 GDK Software

Activities

Response param for the next number is the name of the response header that

contains the next records or total number. Provide this value when looping until

the end of pages/records, so the code knows when to stop looping.

Return the response param in could be filled in with an integer variable. this

variable is used to put the number or the next page or total records in. this could

provide useful information when looping manually for partial retrieval.

2. Pages

The parameters for pages are more or less the same, but keep in mind that in this

case its not the amount of records that is being worked with, but the amount of

pages.

Logging
The logging tab can be used to set a log function that gets called when the

request gets called.

To set the function, create a unit with the following class procedure

class procedure LogRestAction(const Client: TNetHTTPClient; const
URL: string; const Method: string; const Content: TStream; const
Headers: TNetHeaders);

units to use for this function are: System.Classes, System.Net.URLClient,

System.Net.HttpClientComponent;

In this function you can use the parameters to write information to a log file. For

example, at what time the url gets called.

Given the name of the unit RestActivity.Logger and the class TRestLogger,

providing the function would look something like this:

Response

1. Content as string value.

The raw content of the HttpResult is parsed as string value in the result value

2. HttpResponse entity

Its also possible to receive the result as an HttpResponse Entity. This entity is

added as plugin datasource entity by default in codolex.55

155

Codolex

 © 2024 GDK Software

Activities

This entity can be used to receive information about the rest result like 'Status

code' and 'http headers'

3. JSON value

The content as string can also be directly parsed into a JSON Value. This value can

then be used in the JSON Activities to receive values.

This also has the option for a collection result, this option is mandatory when

using pagination.

4. Selected entity

When you recieve a JSON from the rest call as response, and the only thing thats

needed from the JSON is a (list of an) entity, you can also directly parse it into the

entity.

This also has the option for a collection result, this option is mandatory when

using pagination.

7.16 Regular expressions

The reg-ex activities make it possible to do advanced search and replace actions

on strings

More about the options available in reg-ex: Options

Escape chars

IsMatch

Split string

Search match

Replace match

Regex examples:

1. Email validation: ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$

2. Date in YYYY-MM-DD format: ^\d{4}-\d{2}-\d{2}$

132

156

156

157

157

158

159

156

Codolex

 © 2024 GDK Software

Activities

3. IP address validation: ^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|

2[0-4][0-9]|[01]?[0-9][0-9]?)$

4. URL validation: ^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-]*)*\/?$

5. Extracting file extension: \.[0-9a-z]+$

7.16.1 Options

Most of the reg-ex activities have the following options possible

System.RegularExpressions.TRegExOption

7.16.2 Escape chars

Use the 'Escape chars' activity to replace special characters with their escape

codes.

Uses System.RegularExpressions.TRegEx.Escape

Activity properties

begin
 var EscapedStringValue: string;
 EscapedStringValue := TRegEx.Escape(StringValue, True);

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.RegularExpressions.TRegExOption
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.RegularExpressions.TRegEx.Escape

157

Codolex

 © 2024 GDK Software

Activities

end;

Resulting Code

If 'Use wildcards' is checked, the '*' or '\?' characters are not converted.

7.16.3 IsMatch

The 'Ismatch' activity returns a boolean if a regex pattern returns a match on a

string

Uses System.RegularExpressions.TRegEx.IsMatch

Activity properties

begin
 var IsRegexMatch: Boolean;
 IsRegexMatch := TRegEx.IsMatch(StringValue, RegexPattern, []);
end;

Resulting Code

7.16.4 Split string

Split string splits the string on rexeg matches and returns as a codolex string list.

Uses System.RegularExpressions.TRegEx.Split

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.RegularExpressions.TRegEx.IsMatch
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.RegularExpressions.TRegEx.Split

158

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var SplitedRegex: ICodolexList<string>;
 var TextArray := TRegEx.Split(StringValue, RegexPattern, []);

 SplitedRegex := TCodolexList<string>.Create;
 SplitedRegex.AddRange(TextArray);
end;

Resulting Code

7.16.5 Search match

The 'search match' activity searches for a match in a string for a reg-ex pattern

and returns the match.

Uses System.RegularExpressions.TRegEx.Match

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.RegularExpressions.TRegEx.Match

159

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var MatchResult: TMatch;
 MatchResult := TRegEx.Match(StringValue, RegexPattern, []);
end;

Resulting Code

The activity returns an object of the TMatch variable. If the option 'Match

collection' is chosen, the result will be a TMatchCollection

7.16.6 Replace match

The 'Replace match' replaces the matched part of a string to the replacement, and

returns the new total as result.

Uses System.RegularExpressions.TRegEx.Replace

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.RegularExpressions.TRegEx.Replace

160

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var Replacement: string;
 var Variable: string;
 Variable := TRegex.Replace(StringValue, RegexPattern,
Replacement, []);
end;

Resulting Code

7.17 String utils

The string utils sections offers most of the stringutils functions available in delphi.

161

Codolex

 © 2024 GDK Software

Activities

7.17.1 String change

The string change activity offers the delphi stringutils functions to change a

string.

Activity properties

Retrurn value is optional in some change functions.

If return value is selected, a new string with the changed value is created.

If return value is not selected, the old string is changed.

Possible change functions:

QuotedString

Adds quotes to the beginning and end of a string;

Example:

String: "The quick brown fox jumps over the lazy dog."

begin
 var ChangedString: string;
 ChangedString := StringValue.QuotedString;
end;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.QuotedString

162

Codolex

 © 2024 GDK Software

Activities

Result = "'The quick brown fox jumps over the lazy dog.'"

DeQuotedString

Removes the quotes from a string at the beginning and the end if present.

Example:

String: "The quick brown fox jumps over the lazy dog.'"

begin
 var ChangedString: string;
 ChangedString := StringValue.DeQuotedString;
end;

Result = "The quick brown fox jumps over the lazy dog."

Insert

Inserts a string into a string at a given position.

Example:

String = "The quick brown fox jumps over the lazy dog."

String to insert = "test"

Position = 2

begin
 var ChangedString: string;
 ChangedString := StringValue.Insert(2, 'test');
end;

Result = "Thteste quick brown fox jumps over the lazy dog."

Join

Joins an array string with a separator.

Example:

Array = ['the', 'quick', 'brown'];

Separator = -

Position = 1

Number of ietms = 2

begin
 var ChangedString: string;
 var ArrayToJoin := StringArray;
 ChangedString := String.Join('-', ArrayToJoin, 1, 2);
end;

Result = "quick-brown"

Separator is optional

Postion is optional with a default of 0

Number of items is option with a default of everything after position.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.DeQuotedString
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.Insert
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.Join

163

Codolex

 © 2024 GDK Software

Activities

Replace

Replaces a part of a string with another string.

Example:

String = "the-quick-brown"

Text to replace = '-'

new text = ' '

Replace all = True

Ignore case = False

begin
 var ChangedString: string;
 ChangedString := StringValue.Replace('-', ' ', [rfReplaceAll]);
end;

Result = "the quick brown"

Reverse

Reverses the complete string char by char.

Example:

String: "The quick brown fox jumps over the lazy dog."

begin
 var ChangedString: string;
 ChangedString := ReverseString(StringValue);
end;

Result = ".god yzal eht revo spmuj xof nworb kciuq ehT"

LowerCase

converts all chars in a string to lowercase.

Example:

String: "The quick brOwn fox Jumps over The lazy dog."

begin
 var ChangedString: string;
 ChangedString := LowerCase(StringValue);
end;

Result = "the quick brown fox jumps over the lazy dog."

UpperCase

converts all chars in a string to uppercase.

Example:

String: "The quick brOwn fox Jumps over The lazy dog."

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.Replace
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.ReverseString
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.LowerCase
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.UpperCase

164

Codolex

 © 2024 GDK Software

Activities

begin
 var ChangedString: string;
 ChangedString := LowerCase(StringValue);
end;

Result = "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG."

7.17.2 String check

The string check activity can be used to validate various things about strings

Activity properties

Most checks in the string check activity have to option to be case sensitive.

This options results in different Delphi function, for example, SameStr if case

sensitive, and SameText if case not sensitive when using the Equals function.

Possible checks:

Equals / case insensitive

Example:

StringToCheck = "Hello World"

StringToCompare = "world"

Is case sensitive = True

begin
 var var IsSameString: Boolean;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.SameStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.SameText

165

Codolex

 © 2024 GDK Software

Activities

 IsSameString := SameStr(StringToCompare, StringToCheck);
end;

Result = False

Contains / case insensitive

Example:

StringToCheck = "Hello World"

StringToCompare = "world"

Is case sensitive = False

begin
 var var IsSameString: Boolean;
 IsSameString := ContainsText(StringToCompare, StringToCheck);
end;

Result = True

Ends with / case insensitive

Example:

StringToCheck = "Hello World"

StringToCompare = "world"

Is case sensitive = True

begin
 var var IsSameString: Boolean;
 IsSameString := EndsStr(StringToCompare, StringToCheck);
end;

Result = False

Starts with / case insensitive

Example:

StringToCheck = "Hello World"

StringToCompare = "hello"

Is case sensitive = False

begin
 var var IsSameString: Boolean;
 IsSameString := EndsStr(StringToCompare, StringToCheck);
end;

Result = True

Is empty

Example:

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.ContainsStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.ContainsText
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.EndsStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.EndsText
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.StartsStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.StartsText
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.IsEmpty

166

Codolex

 © 2024 GDK Software

Activities

StringToCheck = "Hello World"

begin
 var var IsSameString: Boolean;
 IsSameString := StringToCheck.Trim.IsEmpty;
end;

Result = False

7.17.3 String conversion

The string conversion activity can be used to convert a string to another variable

type or to upper/lower case the string.

Activity properties

Possible variable types to convert to:

Boolean

Is true except when value is of the string is 'False'

Example:

String = "anything"

begin
 var ConvertedString: Boolean;
 ConvertedString := StringToConvert.ToBoolean;
end;

Result = True

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToBoolean

167

Codolex

 © 2024 GDK Software

Activities

CharArray (TArray<Char>)

Example:

String = "hello world"

begin
 var ConvertedString: TArray<Char>;
 ConvertedString := StringToConvert.ToCharArray;
end;

Result = ['H','e','l','l','o',' ','w','o','r','l','d']

Decimal (Double)

Example:

String = "3.5" (or "3,5" depending on settings)

begin
 var ConvertedString: Double;
 ConvertedString := StringToConvert.ToDouble;
end;

Result = 3.5

Extended

Example:

String = "3.5" (or "3,5" depending on settings)

begin
 var ConvertedString: Extended;
 ConvertedString := StringToConvert.ToExtended;
end;

Result = 3.5

Bigint (Int64)

Example:

String = "34214"

begin
 var ConvertedString: Int64;
 ConvertedString := StringToConvert.ToInt64;
end;

Result = 34214

Integer

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToCharArray
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToDouble
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToExtended
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToInt64
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToInteger

168

Codolex

 © 2024 GDK Software

Activities

Example:

String = "34214"

begin
 var ConvertedString: Integer;
 ConvertedString := StringToConvert.ToInteger;
end;

Result = 34214

Single

Example:

String = "34214"

begin
 var ConvertedString: Single;
 ConvertedString := StringToConvert.ToSingle;
end;

Result = 34214

Other conversions:

Lowercase

Example:

String = "Hello world"

begin
 var ConvertedString: Single;
 ConvertedString := StringToConvert.ToSingle;
end;

Result = hello world

Uppercase

Example:

String = "Hello world"

begin
 var ConvertedString: Single;
 ConvertedString := StringToConvert.ToSingle;
end;

Result = HELLO WORLD

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToSingle
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToLower
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.ToUpper

169

Codolex

 © 2024 GDK Software

Activities

7.17.4 String find

The string find activity can be used to find the length or position of a sub string in

a string

Activity properties

begin
 var StringLength: Integer;
 StringLength := StringToFind.Length;
end;

Resulting Code

String length

String length simply returns the length of the given string with the .length string

helper

Finding the index of a substring

There are two options in finding a substring, the first or the last index of.

Both options have the following parameters:

- String to find

- Initial offset

- The length of the substring.

The initial offset is the position of the start of the search. If left empty, the search

will start at the beginning of the string.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.Length
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.IndexOf
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.LastIndexOf

170

Codolex

 © 2024 GDK Software

Activities

The length of the substring determines how many chars needs to be searched as

a maximum. If left empty, the search will go to the end of the string.

7.17.5 String parts

The string parts activity can be used to get different parts of the activity

Activity properties

Possible parts to search for in strings

Before text

All the text before a substring in a string, excluding the substring.

Example:

String: "The quick brown fox jumps over the lazy dog".

Search for: "quick".

begin
 var StringPartsResult: string;
 var Needle := 'quick';
 var TextPosition := StringValue.IndexOf(Needle);
 StringPartsResult := Copy(StringValue, 0, TextPosition);
end;

Result: "The ".

Beyond text

All the text after a sub-string in a string, excluding the sub-string.

Example:

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Copy
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Copy

171

Codolex

 © 2024 GDK Software

Activities

String: "The quick brown fox jumps over the lazy dog".

Search for: "quick".

begin
 var StringPartsResult: string;
 var Needle := 'quick';
 var TextPosition := StringValue.IndexOf(Needle);

 StringPartsResult := EmptyStr;
 if TextPosition > -1 then
 begin
 var LengthToCopy := StringValue.Length - Needle.Length -
TextPosition;
 TextPosition := TextPosition + Needle.Length + 1;
 StringPartsResult := Copy(StringValue, TextPosition,
LengthToCopy);
 end;
end;

Result: " brown fox jumps over the lazy dog ".

Duplicates

Duplicates the input string by given amount.

Example:

String: "brown fox"

Duplicate amount: 3

begin
 var StringPartsResult: string;
 StringPartsResult := DupeString(StringValue, 3);
end;

Result: "brown foxbrown foxbrown fox"

Left part

Returns a sub-string that contains a number of characters from the beginning of

the string.

Example:

String: "The quick brown fox jumps over the lazy dog".

Left string amount: 7.

begin
 var StringPartsResult: string;
 StringPartsResult := LeftStr(StringValue, 7);
end;

Result: "The qui".

Mid part

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.DupeString
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.LeftStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.MidStr

172

Codolex

 © 2024 GDK Software

Activities

Returns a sub-string that contains a number of characters from a starting

position in the string.

Example:

String: "The quick brown fox jumps over the lazy dog".

Mid string amount: 7.

Starting position: 10.

begin
 var StringPartsResult: string;
 StringPartsResult := MidStr(StringValue, 10, 7);
end;

Result: " brown ".

Right part

Returns a sub-string that contains a number of characters from the end of the

string.

Example:

String: "The quick brown fox jumps over the lazy dog".

Right string amount: 7.

begin
 var StringPartsResult: string;
 StringPartsResult := RightStr(StringValue, 7);
end;

Result: "azy dog".

Padding -> Right part & Left part

Adds a character to the end and/or front of a string a given amount of times.

Example:

String: "The quick brown fox jumps over the lazy dog".

Right string amount: 3.

Character to add: "-".

Add to: "Both"

begin
 var StringPartsResult: string;
 var PaddingLengthtoAdd := StringValue.Length + 3;
 StringPartsResult := StringValue.PadLeft(PaddingLengthtoAdd,
'-');
 PaddingLengthtoAdd := PaddingLengthtoAdd + 3;
 StringPartsResult :=
StringPartsResult.PadRight(PaddingLengthtoAdd, '-');
end;

Result: "---The quick brown fox jumps over the lazy dog---".

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.RightStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.RightStr
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.StrUtils.LeftStr

173

Codolex

 © 2024 GDK Software

Activities

Skip end

Removes a sub-string from a string based on a starting position and a number of

characters to remove.

Example:

String: "The quick brown fox jumps over the lazy dog".

Starting position: 10.

Characters to remove: 10.

begin
 var StringPartsResult: string;
 StringPartsResult := StringValue.Remove(10, 10);
end;

Result: "The quick jumps over the lazy dog".

7.17.6 String split

The string split activity can be used to split strings on a delimiter and return the

result as array

Activity properties

begin
 var SplitStringArray: ICodolexList<string>;
 SplitStringArray := TCodolexCollections.CreateList<String>;

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.TStringHelper.Remove

174

Codolex

 © 2024 GDK Software

Activities

 var SplittedParts := SplitString(StringToSplit, ',');

 SplitStringArray.AddRange(SplittedParts);
end;

Resulting Code

7.18 Variables

The variable activities can be used to create entities/variables and manipulate

them.

Create variable

Change variable

List Operations

Copy entity data

Free Object

Get by association

7.18.1 Create variable

The create variable activity can be used to create instances of ordinal types, lists,

entities and classes. The result of this activity is a variable that can be used in the

rest of the flow, and can be set as the result of a flow. It is possible to initialise the

variable directly, by specifying text in the initialisation field.

174

178

178

180

181

182

175

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var StringArray: TArray<string>;
 StringArray := ExisitingStringArray;
end;

Resulting Code

Possible variable types:

· Array -> TArray<T>

· Bigint -> Int64

· Binary -> ICodolexBinary

· Boolean -> Boolean

· Custom

· Date/Time -> TDateTime

· Decimal -> Double

· Entity

· Enumeration -> unsuported

· Flow class

· Integer -> Integer

· JSONValue -> TJSONValue

· List -> ICodolexList<T>

· String -> string

Arrays & Lists

Arrays and list have the extra option for collection type, this determines the T of

the array/list.

Possible options are:

· Auto increment -> Integer

176

Codolex

 © 2024 GDK Software

Activities

· Bigint -> Int64

· Boolean -> Boolean

· Custom

· Date/Time -> TDateTime

· Decimal -> Double

· Entity

· Integer -> Integer

· String -> string

Custom

A custom type variable can be any type needed, in the create variable activity, the

custom type also give the option to include a unit in the implementation if

needed for the variable.

Entity

The entity type lets you create an entity and fill in the attributes. The possible

entities are the entities available in the projects datasources.

Initialize class variable

When using class variables in a flow class, the initialisation is possible in every

non-class flow of that class.

177

Codolex

 © 2024 GDK Software

Activities

7.18.2 Clone entity

The clone entity activity creates a new instance of an existing entity.

Activity properties

begin
 var SecondEvent: CodolexProject.DataSource.TestDB.IEvent;
 SecondEvent := CodolexProject.DataSource.TestDB.TEvent.Create;
 SecondEvent.EventId := Event.EventId;
 SecondEvent.CourseId := Event.CourseId;
 SecondEvent.LocationId := Event.LocationId;
 SecondEvent.EventDate := Event.EventDate;
 SecondEvent.poster := Event.poster;
 SecondEvent.Location := Event.Location;
 SecondEvent.Course := Event.Course;
 SecondEvent.EventRegistrations := Event.EventRegistrations;
end;

Resulting Code

Keep in mind that some properties that must be unique to entities in the database

needs to be replaced with a different value.

Associations are included as well, although the associated objects are not cloned.

178

Codolex

 © 2024 GDK Software

Activities

7.18.3 Change variable

The "change variable" activity is used to modify the value of a variable. To do this,

an expression can be specified. An expression can be a simple text, but also a

complex formula or a reference to another variable.

Activity properties

begin
 Shippers.CompanyName := 'NameChange';
 Shippers.Orders_ShipVia_ShipperIDList := OrdersList;
end;

Resulting Code

7.18.4 List Operations

Use the list operation activity to control list-related tasks.

Uses System.Generics.Collections.TList

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Generics.Collections.TList

179

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var GreaterStrings: ICodolexList<string>;
 GreaterStrings := StringList.Filter(
 function(Value: string): Boolean
 begin
 Result := Value.Length > 10;
 end
);
end;

Resulting Code

The list operation supports the following actions:

· Count

· Filter

· First

· Last

· Max

· Min

· Sum

Count

Counts the amount of items in a list.

Filter

Filter also needs an Predicate expression to filter on. Value is the collection

element variable to be used in the expression.

180

Codolex

 © 2024 GDK Software

Activities

First

Returns the first object in the collection.

Last

Returns the last object in the collections.

Max

Returns the object with the max value of a given expression.

The 'Left' and 'Right' objects are to be used in the expression.

Min

Returns the object with the min value of a given expression.

The 'Left' and 'Right' objects are to be used in the expression.

Sum

Can only be used on a list with number types, returns the sum of all numbers in

the list.

Sort

Changes the list to a certain order. It possible to select the attribute of an entity, or

use a left and right comparison.

7.18.5 Copy entity data

The copy entity data activity can be used to transfer the values of an instance of

an entity to another variable.

181

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 ToEntity.ShipperID := FromEntity.ShipperID.Value;
 ToEntity.Phone := FromEntity.Phone.Value;
end;

Resulting Code

You can exclude fields to be copied, separated by a comma.

Associations are not included in the copy activity.

7.18.6 Free Object

The Free object can be used to release the contents of a variable.

Uses System.SysUtils.FreeAndNil

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.SysUtils.FreeAndNil

182

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 FreeAndNil(FreeAbleObject);
end;

Resulting Code

By default the entities created that are from a datasource are not available in the

activity, The entities from datasources are interfaced objects by default and not

available in the free object activity.

Custom entity types are available to be freed.

7.18.7 Get by association

The Get by association activity is used to create a new variable over an

association of an entity with the value of the association.

183

Codolex

 © 2024 GDK Software

Activities

The customer entity has an association with a company, as specified in the

association tab of the entity. If you have an entity of the type Customer in your

flow, you can get the corresponding Company by using the Get by association

activity:

Activity properties

begin
 var Company: DataSource.Codolex.ICompany;
 Company := Customer.Company;
end;

Resulting Code

Watch the following video for more information and a demo of this activity.

Get by association

https://www.youtube.com/watch?v=NXvwu2CJu-0

184

Codolex

 © 2024 GDK Software

Activities

7.19 Zipping

The zipping activities allows for easy creation and extraction of zip files.

Create/open zip file

Extract zipfile

Add to zipfile

Close zipfile

Listing zip

Read zip

7.19.1 Create/open zip file

The 'Create/open zip file' activity can be used to create a TZipfile object with a

reference to an existing .zip file or create a new .zip file.

Uses System.Zip.TZipFile

Activity properties

begin

184

185

186

188

188

189

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Zip.TZipFile

185

Codolex

 © 2024 GDK Software

Activities

 var ZipFile: TZipFile;
 var ZipPath: string;
 ZipPath := ZipFilePath;

 ZipFile := TZipFile.Create;
 ZipFile.Open(ZipPath, zmWrite);
end;

Resulting Code

If no .zip file is found at the zip path, and the path is valid, a new .zip file will be

created.

7.19.2 Extract zipfile

Extract zipfile can be used to extract files from a zip, and place it at a destination

Uses System.Zip.TZipFile.Extract

Activity properties

begin
 var CurrentZip := ZipFile;
 CurrentZip.Extract('ZippedFile', Destination, False);
end;

Resulting Code

The provided zipfile can be a string with the path, or a variable of the TZipFile

type.

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Zip.TZipFile.Extract

186

Codolex

 © 2024 GDK Software

Activities

If a existing TZipFile variable is provided, the File must be Opened before

extracting.

The destination must be an existing path to a folder.

If a file (string) or index (Integer) is provided, only the file with the name or

location will be extracted.

When 'Create sub folder' is selected, the path must be included in the Destination

variable.

To prevent errors in the zip file, always Close the zipfile after extracting from

the zip.

7.19.3 Add to zipfile

Add to zipfile can be used to add files or directories to an open zip file.

Uses System.Zip.TZipFile.Add

Activity properties

begin
 var ArchiveName := '';
 var ZipFile1 := ZipFile;

188

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Zip.TZipFile.Add

187

Codolex

 © 2024 GDK Software

Activities

 for var ContentPath in StringArray do
 begin
 var IsDirectory := TDirectory.Exists(ContentPath);
 if IsDirectory then
 begin
 var FolderInArchive := TPath.GetFileName(ContentPath) + '/';
 ZipFile1.Add(TBytes(nil), FolderInArchive, zcDeflate);

 var Files := TStringList.Create;
 Files.AddStrings(TDirectory.GetFiles(ContentPath));

 var FileItem: string;
 for FileItem in Files do
 begin
 ArchiveName := TPath.Combine(FolderInArchive,
TPath.GetFileName(FileItem));
 ZipFile1.Add(FileItem, ArchiveName, zcDeflate);
 end;

 var SubFolders := TStringList.Create;
 SubFolders.AddStrings(TDirectory.GetDirectories(ContentPath,
'*.*', TSearchOption.soAllDirectories));

 for var SubFolderItem in SubFolders do
 begin
 Files.Clear;
 Files.AddStrings(TDirectory.GetFiles(SubFolderItem));

 var SubFolderName := TPath.GetFileName(SubFolderItem) +
'/';
 var SubFolderArchiveName := TPath.Combine(FolderInArchive,
SubFolderName);
 ZipFile1.Add(TBytes(nil), SubFolderArchiveName, zcDeflate);

 for FileItem in Files do
 begin
 ArchiveName := TPath.Combine(SubFolderArchiveName,
TPath.GetFileName(FileItem));
 ZipFile1.Add(FileItem, ArchiveName, zcDeflate);
 end;
 end;
 end
 else
 begin
 ArchiveName := TPath.GetFileName(ContentPath);
 ZipFile1.Add(ContentPath, ArchiveName, zcDeflate);
 end;
 end;
end;

Resulting Code

The provided zipfile can be a string with the path, or a variable of the TZipFile

type.

If a existing TZipFile variable is provided, the File must be Opened before adding.

188

Codolex

 © 2024 GDK Software

Activities

'Files/content to add' can be a string or an array of strings, the paths can be

folders or files.

The compression method is Deflate by default.

More about compression methods can be found in the embarcadero wikki:

System.Zip.TZipCompression

When adding folders, there are 2 options to concider.

If only the option to 'add all files from folder' is checked, only the files directly in

the folder are added to the zip.

To include folders and files in those folders, the option 'Include subfolders' are

also checked.

To prevent errors in the zip file, always Close the zipfile after adding to the zip.

7.19.4 Close zipfile

The close ZipFile must be used after extracting or adding data to a .zip file

Uses System.Zip.TZipFile.Close

Activity properties

begin
 ZipFile.Close;
end;

Resulting Code

7.19.5 Listing zip

'Listing zip' can be used to list all the files that are present in the zip file.

Uses System.Zip.TZipFile.Read

188

https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Zip.TZipCompression
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Zip.TZipFile.Edit
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Zip.TZipFile.Read

189

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 var ListedZip: ICodolexList<string>;
 var ZipFile := TZipFile.Create;
 try
 ZipFile.Open(ZipFileToUse, zmRead);
 ListedZip := TCodolexList<string>.Create;
 ListedZip.AddRange(ZipFile.FileNames);
 finally
 ZipFile.Close;
 ZipFile.Free;
 end;
end;

Resulting Code

The provided zipfile can be a string with the path, or a variable of the TZipFile

type.

The result will be a TCodolexList of strings with the relative paths.

If a file (string) or index (Integer) is provided, only the file with the name or

location will be listed as string.

7.19.6 Read zip

The read zip activity can be used to read the contents of a file in a zipfile without

extracting.

190

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 ZipFileToUse.Read('FileName', CustomArray);
end;

Resulting Code

The output must be a variable of type TBytes, TStream or TArray<Byte>.

7.20 Advanced

Enter topic text here.

7.20.1 OAuth2

Requirements
· Paid access to the oauth2 component

OAuthComponent

191

Codolex

 © 2024 GDK Software

Activities

The component has quite a few options, let's go over them one by one

- Description

Used to set a description in the activity

- Predefined provider

There are some predefined providers added to the component, for example

Microsoft. Selecting one of the providers fills the authentication endpoint with the

usual endpoint.

E.g. for microsoft this is 'https://login.microsoftonline.com/

{tenant}/oauth2/v2.0/authorize' the only thing you need to replace is the tenant

id in this case. Keep in mind that Codolex generates code, so any hardcoded

sensitive information added here, is also added to the resulting code.

- Authentication endpoint

https://login.microsoftonline.com/{tenant}/oauth2/v2.0/authorize
https://login.microsoftonline.com/{tenant}/oauth2/v2.0/authorize

192

Codolex

 © 2024 GDK Software

Activities

this is the endpoint that is going to be called when authentication is started.

Check with your provider what the URL needs to be. Or select one of the

predefined providers, and add the missing information.

- Response type

The option if the authorization endpoint should return a code, or a token.

This defines how the result should be handeld, so lets go over both options

quickly.

Code:

The code is the first step in authentication. The Endpoint will send a code to the

redirect url. This code must be send to a second URL with the REST Activity to

retrieve a token.

Token:

This retrieves a token directly, this token can be used in the calls to retrieve or

send information.

- Redirect is handled by:

This defines how the code should be received.

If Existing server is selected, Codolex assumes the result wil be send to the given

Redirect url, and no further handling of the authentication should be done in

this activity. There is no result value in this case.

If Client side is selected, Codolex will start a server on the localhost which waits

for the code/token result before going on with the rest of the activities in the flow.

The result value will be the code if the authentication was successful.

- Redirect URL

The redirect url is the url where the code/token will be send to. If Existing sever

is selected for handling, the url can be filled in and should be available and able to

handle the result code. If Client side is selected the redirect is always the

localhost and cannot be changed, except for the port.

The result code is usualy send as a parameter, so the call to expect can look

something like this:

 'https://Localhost:7070?code=12345abcd'

This URL must be configured at the provider

- Http type

Only available when Client side is selected. This provides the option to use a

secured local server. Some providers only redirect to a Https url for security

reasons. When Https is selected. 3 new input fields are shown.

https://Localhost:7070?code=12345abcd

193

Codolex

 © 2024 GDK Software

Activities

This allows to provide a certificate and a key to the activity to start a local server

for the redirect URL.

See https://www.openssl.org/ for more information about ssl.

- Port

Only available when Client side is selected. This defines the port of the redirect

url where the provider can send the code to.

- Timeout

Only available when Client side is selected. This defines how long the activity

should wait (in milliseconds) for the response. Don't make this number to low,

given that the user needs some time to log-in in most cases.

- Scope

Some providers need a scope when requesting a code, the scopes determines

what rights the user has with the resulting code/token. This scope also needs to

be given in the configuration for the provider in most cases.

- State

The state can be used to pass extra information to the request, which then gets

passed to the redirect url. This can be used when multiple calls come through at

the redirect url, and some extra information is needed to find the caller for

example. Another example is pagination.

The state is not required.

7.21 OpenAI

Open AI chat contains the activity to connect with ChatGPT

AI Chat

7.21.1 AI Chat

The AI Chat activity lets you connect to the open AI api to make use of Chat GTP

in your codolex project.

Uses System.Net.HttpClientComponent.TNetHTTPClient

193

https://www.openssl.org/
https://docwiki.embarcadero.com/Libraries/Alexandria/en/System.Net.HttpClientComponent.TNetHTTPClient

194

Codolex

 © 2024 GDK Software

Activities

Activity properties

begin
 ...
 try
 NetClient := THTTPClient.Create;
 NetClient.CustHeaders.Add('Authorization', 'Bearer ' +
'YourApiKey');
 NetClient.ContentType := 'application/json';

 var Response :=
NetClient.Post('https://api.openai.com/v1/chat/completions',
JsonStream);

 var IsSuccessful := (Response.StatusCode > 199) and
(Response.StatusCode < 300);
 if not IsSuccessful then
 raise ENetException.CreateFmt('%d %s%s%s',
[Response.StatusCode, Response.StatusText, sLineBreak,
Response.ContentAsString]);

195

Codolex

 © 2024 GDK Software

Activities

 JsonResponse :=
TJSONValue.ParseJSONValue(Response.ContentAsString);

 var ChoiceJson :=
JsonResponse.GetValue<TJSONArray>('choices');
 var MessageJson :=
ChoiceJson[0].GetValue<TJsonObject>('message');

 ChatMessage := JsonAdapter.CreateEntity;
 JsonAdapter.MapToEntity(MessageJson, ChatMessage);
 ...
end;

Part of resulting Code

More information about the API:

https://openai.com/api/

The model can be set to one of the 5 options, Choosing the right model for your

needs and token usage is recommended.

· gpt-4o (default)

· gpt-4o-mini

· gpt-4-turbo

· gpt-4

· gpt-3.5-turbo

The role can also be selected, depending on the type of conversation needed.

more about roles: https://platform.openai.com/docs/guides/chat-

completions/overview

Provide a list of messages if you want to keep a conversation instead of just one

question. this needs to be a list of the plugin datasource entity 'ChatMessage'.

Keeping track of the conversation is important for asking follow-up questions, so

the AI knows what you are talking about.

The question and response messages are directly added in the activity.

'Chat message' and 'Authorization key' are string fields that can be filled with the

expression editor.

https://openai.com/api/
https://platform.openai.com/docs/guides/chat-completions/overview
https://platform.openai.com/docs/guides/chat-completions/overview

Creating your own activity

197

Codolex

 © 2024 GDK Software

Creating your own activity

8 Creating your own activity

Here we will explain how to create your own custom Codolex activity. We will use

an example based on two new activities: "Play sound" and "Stop sound".

Getting started

Implementation

Tags

Defined entity

CodeGen

Validation

Testing

SynEdit Downloads

8.1 Getting started

Prerequisites

· Delphi / RAD Studio installed

· Codolex installed

Set up project

To add an activity to Codolex, we need to create a so-called plugin that will add

the necessary components and code. Basically, this is a BPL. We created a plugin

template for you to download, so you don't need to start from scratch. Click the

following link to download the zip file with the package source code:

GDK-codolex-plugin-template.zip

Project settings

Once you downloaded the project, we need to take a look at the settings to make

it ready for the new activity.

Add SynEdit

The project makes use of the installed Codolex files. The only thing you need in

addition is the CodolexSynEditDR.dcp file for compiling. If you run the project

straight after installation the following error will occur:

Download the SynEdit component and place the component in your search

path. Be sure to get the right version for Codolex and your RAD Studio version. In

the example, we will use Codolex 1.7.0 and RAD Studio 11.3.

You need to include the path to this file in your search path.

197

199

207

208

211

213

215

218

218

https://codolex.com/downloads/GDK-codolex-plugin-template.zip

198

Codolex

 © 2024 GDK Software

Creating your own activity

Rename template files

Open the template project and rename the template part in the file

"CodolexComponents.Template.Plugin.pas" to something that defines your

plugin. Let's name it CodolexComponents.PlaySound.Plugin.pas. Don't forget to

change the name defined in the PluginName function.

The 'Plugins\Core\Example' folder also contains the files with the name

example in them. Every activity you develop should have this file set. In the

implementation part, we will take a closer look at each one of these files. For now,

you only have to rename the word Example to the name of your plugin.

Set project BPL name

In addition to renaming the files, it's good to rename the BPL project. This is also

a good time to check if the settings are still $(Auto) for the LIB suffix.

199

Codolex

 © 2024 GDK Software

Creating your own activity

This ensures that the right suffix for the plugin is used. So, if you installed Codolex

for Delphi 11.3, and you are building the plugin in the same version, the suffix

280.bpl is used. If the BPL does not have the right suffix, it will not be used by

Codolex.

Define your activities

In the Components function in the Codolex.YourProjectName.Plugin.Pas file, you

need to define the activities your plugin should contain. If you only want one

activity, you can change the name of TExamplePluggableComponent to your

class. If you want more activities, be sure to create them with the right names. In

this example we've looked at two activities needed. Let's name them

"TPlaySoundPluggableComponent" and "TStopSoundPluggableComponent"

These are the activities that will show up in the activity palette once the plugin is

complete and installed. But, as you can see from the error lines, we need to

implement these activities.

8.2 Implementation

For each activity, we need to implement the following files:

· Codolex.Activity.YourActivityName.Pluggable.pas

· Codolex.Activity.YourActivityName.Component.Interfaces.pas

· Codolex.Activity.YourActivityName.Component.pas

· Codolex.Activity.YourActivityName.Editor.pas

· Codolex.Activity.YourActivityName.Editor.dfm

· Codolex.Activity.YourActivityName.Storage.pas

· Codolex.Activity.YourActivityName.Validator.pas

· Codolex.Activity.YourActivityName.CodeGen.Delphi.pas

In the example folder, there is an example for every listed file. Remove the

example files from the project to prevent errors when adding your activity files.

To start, we can copy these files into a new folder, rename them, and add them to

the project. The easiest way is to rename every instance of example in the names

and contents to your activity name. Continuing with our example, let's name this

"Playsound".

200

Codolex

 © 2024 GDK Software

Creating your own activity

After we added the files for PlaySound, we can look at the files one by one.

Pluggable

This class is the base for your activity and connects all the needed units. In this

class, you can provide the details for the activity, like the name and description.

The pluggable class defined here is added to the list of activities, supported by the

plugin, in the

"CodolexComponents.YourActivityName.Plugin.pas".

The declaration should look something like this:

TPlaySoundPluggableComponent = class(TInterfacedObject,
IFlowPluggableComponent, IFlowPluggableComponentWithValidation,
IFlowPluggableComponentWithEditor)
public
 function Name: string;
 function Description: string;
 function Category: string;

 function CreateComponent(const Flow: IFlow): IFlowComponent;

 function CodeGenerator(const FlowComponent: IFlowComponent):
IFlowPluggableComponentCodeGen;
 function Storage(const Container: TContainer):
IFlowPluggableComponentStorage;
 function ShowEditor(const FlowComponent: IFlowComponent; const
Container: TContainer): TModalResult;

 function Validator(const FlowComponent: IFlowComponent):
ICodolexValidator;
 function CreateEditor: IFlowPluggableComponentEditor;

 function SupportedLanguages: TCodolexLanguages;
end;

Let's go over a few functions to clarify what they are needed for.

· Name: Provides the name for the validator and the storage.

· Description: Provides the default description for your activity. This is how the

activity will be shown in the palette.

201

Codolex

 © 2024 GDK Software

Creating your own activity

· Category: Defines the category the activity can be found in in the palette. It's

recommended to provide a unique name that does not conflict with the other

Codolex categories. Keep them the same for the activities you create here. For

both activities, let's use the Playsound category.

· SupportedLanguages: This returns a list of languages that this activity is going

to support. For now, Delphi is the only language used. When more languages

are supported by Codolex, be sure to update this section when you want to use

it for another language. The available languages are specified in the

'TCodolexLanguage' Enum from the 'CodeGen.Language.Defines' unit.

· GetTags: This function is not present in the example yet but could be a great

function to add. If your activity has multiple options, and you know a few of

these options are going to be used quite often, you can add a tag for each of

these options to make them faster to select.

· Other functions of the pluggable component: The other functions are needed

for Codolex to create the instance and storage files etc. Assuming you copied

them correctly, these don't need to be changed.

Component interface

To create your activity you need a component. This of course starts with creating

the interface. Your interface has to be inherited from the 'IFlowActivity' interface.

In your interface, you can specify the properties you need for your activity.

The first thing you need to resolve here is the GUID, Every activity needs its own

GUID, which you can create via the shortcut ctrl+shift+g. Replace the

{$MESSAGE WARN 'Set GUID'} with a unique GUID.

In our case, we need the user to provide a file for the sound and the mode for the

Playsound function (SND_NODEFAULT Or SND_ASYNC Or SND_LOOP). So we

can define a property SoundFile of the type IVariable and PlayMode of the type

String

type
 IFlowActivityPlaySound = interface(IFlowActivity)
 ['{344D0F87-1DB3-4C89-B5E6-57A638C649E9}']

 function GetSoundFile: IVariable;
 function GetPlayMode: string;

 procedure SetSoundFile(const Value: IVariable);
 procedure SetPlayMode(const Value: string);

 property SoundFile: IVariable read GetSoundFile write
SetSoundFile;
 property PlayMode: string read GetPlayMode write SetPlayMode;
 end;

Component Implementation

202

Codolex

 © 2024 GDK Software

Creating your own activity

When you've finished your interface, you also need to make its implementation.

This is done by creating a class that inherits from the 'TFlowActivity' class, as well

as the 'IFlowComponent' interface and your newly created interface.

Implement the property functions. The complex fields like IVariable should be

ignored by the JSONMarshaller in the storage because we need to serialize the

references ourselves, so we add the [JSONMarshalled(False)] directive before the

variable declaration. Add the REST.Json.Types unit to the interface uses section as

well. Otherwise, this directive gets ignored, and you will get errors.

uses
 ...
 REST.Json.Types,
 ...;

 TFlowActivityPlaySound = class(TFlowActivity, IFlowComponent,
IFlowActivityPlaySound)
 const
 FQName = 'Template.Core.PlaySound';
 DescriptionOfComponent = 'Play sound';
 private
 [JSONMarshalled(False)]
 FSoundFile: IVariable;

 FPlayMode: string;
...

Next to the properties, you can also see the 2 constants. FQName and

DescriptionOfComponent. These properties define the name and description of

your component. The name is the same as described in the Pluggable section

above. The description is used in your flow as the name of the activity.

There are also some procedures which are used by Codolex. The first is

InitComponent. In this procedure, you set the name, description, and icon of your

component. This is done by setting the variables of the TFlowActivity we inherited

in the class.

For the Icon, you can use any UTF-8 character and color. Note that Delphi is not

able to display all UTF-8 characters and might show as an invalid character in the

IDE. You can also provide a color to use in the activity. It's recommended to keep

them the same for all the activities you add in one component.

procedure TFlowActivityPlaySound.InitComponent;
begin
 inherited;

203

Codolex

 © 2024 GDK Software

Creating your own activity

 FComponentName := FQName;
 FComponentDescription := DescriptionOfComponent;

 Icon.Init(' ', clWebLimeGreen);
end;

In the init component function, it's also possible to add default values to the

properties defined in the interface.

procedure TFlowActivityPlaySound.InitComponent;
begin
 ...
 FPlayMode := 'Async';
 ...
end;

With the inherited function InitializeElement, you can specify a return variable. If

you would like this variable to be of a custom type, then use the next piece of

code

procedure TFlowActivityPlaySound.InitializeElement;
begin
 inherited;

 ReturnVariable.VariableType := TDataType.Custom;
 _ReturnVariable.CustomTypeName := 'TYourCustomType';
end;

Editor

Next, continuing with our example, the editor file will be the property screen for

this activity. This is the screen you are going to see in Codolex when editing an

activity. Here you can define how the user can provide input for the properties.

You can design this screen the way you like it, or, the way you think will be the

most intuitive for the user of the activity. For ordinal types, you can use the

default input fields that Delphi has to offer. For example, if you want the user to

fill in a name, just put a TEdit on the form with a label that clarifies that is the

name input. And just like that, the description input that is already present.

204

Codolex

 © 2024 GDK Software

Creating your own activity

Another option is to use the editor's inputs provided by Codolex, since they are

needed for complex properties like the IVariable. These editors are unavailable

during design time, so you must initialize them at runtime. This can be done in

the initialize section.

But before we can initialize them, we need to define a few things.

1. Add these uses for your input to the interface section. (if not there already)

Codolex.Activity.SoundFile.Component.Interfaces,
Codolex.Modelling.Helper.Interfaces,
ProjectModel.Variable.Interfaces,
Codolex.Editors.PropertyInput.FlowVariable;

To see the other editors that are available, use the autocomplete on

"Codolex.Editors.PropertyInput." this will provide you with options for entity

selection, lookups, etc.

If the editor does not see the available classes. Try to compile the project, and

restart so load the configuration correctly

2. Create class properties for the IVariable and the FlowVariable input.

Private
 FSoundFile :IVariable;
 FSoundFileInput: TfrmFlowVariableInput;
...

3. Add a resource string for the label name. This is not mandatory but could make

it easier to change language settings if needed.

resourcestring
 SoundFileInputLabel = 'Sound file (.wav)';

4. Place a panel in the designer where you want the input to be. This panel is

going to be filled with the input with alClient alignment. It's recommended to give

this panel the alTop align setting, as seen in the picture above.

5. Add the "OnChange" function for the sound file. This function can be assigned

to the "OnChange" event after adding the input, to save the value after the user

provides input.

procedure OnSoundFileChange(Variable: IVariable);
...
procedure TfrmActivityPlaySound.OnSoundFileChange(Variable:
IVariable);
begin

205

Codolex

 © 2024 GDK Software

Creating your own activity

 FSoundFIle := Variable;
end;

6. Add the CanChooseVariable function for the sound file input. This function also

needs to be assigned after the input is created. In this case, it's needed to provide

the right suggestions for the user in the input field. Here you can also limit the

options for the user. For example, we want the user to select a string for the

sound file.

function
TfrmActivityPlaySound.CanChooseVariableForSoundFile(Variable:
IVariable): Boolean;
begin
 Result :=
TFlowVariableDefines.IsVariableCurrentSelected(Variable,
FSoundFile) or
 TFlowVariableDefines.IsVariableString(Variable);
end;

The "TFlowVariableDefines" class can be used for all sorts of helpers. Here is how

you can check for a custom type:

function
TfrmActivityPlaySound.CanChooseVariableForSoundFile(Variable:
IVariable): Boolean;
begin
 Result := False;

 if Assigned(Variable) then
 begin
 var IsCustom := Variable.VariableType = TDataType.Custom_;
 if IsCustom then
 begin
 var CustomType := Variable.CustomTypeName.ToLower;
 Result := CustomType = 'Array of const';
 end;
 end;
end;

7. Now we can go on with the initialization code.

var FSoundFileInput := TfrmFlowVariableInput.AddInput(
 pnlSoundFile,
 FFlowModellingHelper,
 FlowComponent,
 FSoundFile
);

We can use the AddInput function from the Input form class to create the

component and add in the class property we created in step 1. By providing the

panel, the class automatically adds the component as a child of the panel.

206

Codolex

 © 2024 GDK Software

Creating your own activity

After we have created the input. we have to add some properties and events and

initialize the component.

FSoundFileInput.LabelName := SoundFileInputLabel;
FSoundFileInput.InitializeInput;
FSoundFileInput.OnChange := OnSoundFileChange;
FSoundFileInput.OnFilter := CanChooseVariableForSoundFile;
FSoundFileInput.LoadVariableSelection;

Repeat these steps for all your properties to make every property available in the

editor. When all the editors are set up, the user can edit the value of the input. But,

for the changes to be persistent, we need to save the values in the component as

well.

This can be done with the function SaveToModel.

procedure TfrmActivityPlaySound.SaveToModel;
begin
 FActivity.SoundFile := FSoundFile;
 FActivity.Description := editDescription.Text;
 FActivity.PlayMode := FPlayMode;
end;

Be sure to fill in the contents of this function to save all your properties.

Storage

The storage unit describes how your activity should be saved to and read from

the JSON. This is done using 3 classes. Storage, Serializer, and Deserializer. We

don't need to worry about the storage class. This class is here to provide an

instance of the serializer and deserializer.

The serializer needs a DoSerialize function that serializes the references for us

that we did mark as "JSONMarshalled False".

procedure TActivityPlaySoundSerializer.DoAfterSerialize;
var

 Activity: IFlowActivityPlaySound;
begin
 inherited;

 Activity := FEntity;
 SerializeReference<IVariable>(FJson, 'SoundFile',
Activity.SoundFile);
end;

We need to deserialize the same references in the afterparse.

procedure TActivityPlaySoundDeserializer.DoAfterParse;

207

Codolex

 © 2024 GDK Software

Creating your own activity

var
 Activity: IFlowActivityPlaySound;
begin
 inherited;

 Activity := FEntity;
 DeserializeReference(FJson, 'SoundFile', procedure (const
Variable: IVariable)
 begin
 Activity.SoundFile := Variable;
 end);
end;

Remember, these functions need to be overridden in the declaration to make use

of the inherited function.

8.3 Tags

On the Getting started page, while discussing the

Codolex.Activity.PlaySound.Pluggable.pas File, we mentioned something about

implementing tags. Now that we have our component defined, we can add tags

to complete the plugin definition.

An example of this can be found in the create variable activity of Codolex. This

activity can also be found in the palette by searching for boolean. When you drag

the activity into the flow while searching for "boolean", the variable type boolean

is automatically selected.

We could implement this in our plugin for the Playmode selection.

We need to add IFlowPluggableComponentWithTags to the pluggable class

interfaces, and add the functions GetTags and Initialize.

function GetTags: TArray<string>;
procedure Initialize(const FlowComponent: IFlowComponent; const
WithTag: string);

In the GetTags function, we can define a string array that contains all the tags the activity can be found on. I will add "Async" and "Loop" in this section.

function TPlaySoundPluggableComponent.GetTags: TArray<string>;
begin
 Result := ['Async', 'Loop'];
end;

In the Initialize procedure, we need to set the value based on the selected tag. The

WithTag parameter contains the selected tag. We can check if that tag was async

or loop, and then assign the correct playmode.

197

208

Codolex

 © 2024 GDK Software

Creating your own activity

procedure TPlaySoundPluggableComponent.Initialize(const
FlowComponent: IFlowComponent; const WithTag: string);
var
 Activity: IFlowActivityPlaySound;
begin
 if not Supports(FlowComponent, IFlowActivityPlaySound, Activity)
then
 raise
EInvalidOpException.CreateFmt(ValidationNotAvailableForActivity,
[FlowComponent.ComponentName]);
 if WithTag = 'Loop' then
 Activity.PlayMode := TPlayMode.SND_LOOP
 else if WithTag = 'Async' then
 Activity.PlayMode := TPlayMode.SND_ASYNC;
end;

With this, it is easier for the user of this activity to directly select the right

Playmode.

8.4 Defined entity

When creating an activity, it could be possible that a new entity for the properties,

or result variable is needed.

It's possible to add an extra element to the Plugin datasources within the

component.

Let's say we want to provide an extra option in our activity to provide an entity

with the filename and play mode as attributes.

We need to take the following steps

1. Define guid(s) for entities to add

2. Add "Codolex.Activity.YourActivityName.DefinedEntity.pas".

3. Add entities to generate action to the '...Component.Pas'.

4. Call entities to add in the '...Puggable.pas'.

5. Extra info

1. Define guid(s) for entities to add
Go to the 'Component.Interfaces.pas' file, and add a const section to the

interfaces. Use Ctrl+Shift+G to generate a guid for every entity

interface

uses
 ...;

const
 PlaySoundConfigGuid = '{55FC2C2E-AB35-4BD2-ABC4-F6950FE10A0D}';

55

209

Codolex

 © 2024 GDK Software

Creating your own activity

2. Add DefinedEntities.pas
Add a new unit, and use the following code in the unit (Replace playsound with

your activity name)

unit Codolex.Activity.PlaySound.DefinedEntities;

interface

uses
 DataModel.Entity.Interfaces,
 Codolex.Spring.Collections;

type
 TCreateDataEntityFunc = reference to function(const Name:
string): IDataEntity;

 TPlaySoundDefinedEntities = class
 private
 class function CreatePlaySoundConfig(const CreateEntity:
TCreateDataEntityFunc): IDataEntity;

 public
 class procedure Get(const Entities: IDictionary<string,
IDataEntity>; const CreateEntity: TCreateDataEntityFunc);
 end;

implementation

uses
 DataModel.DataTypes.Defines;

{ TPlaySoundDefinedEntities }

class procedure TPlaySoundDefinedEntities.Get(const Entities:
IDictionary<string, IDataEntity>; const CreateEntity:
TCreateDataEntityFunc);
begin
 var PlaySoundConfig := CreatePlaySoundConfig(CreateEntity);
 Entities.Add(PlaySoundConfig.Name, PlaySoundConfig);

 //repeat this for as many entities as you need
end;

class function
TPlaySoundDefinedEntities.CreatePlaySoundConfig(const CreateEntity:
TCreateDataEntityFunc): IDataEntity;
begin
 Result := CreateEntity('PlaySoundConfig');
 Result.Guid := PlaySoundConfigGuid;

 Result.AddStringField('FileName', '{4061BAB6-EE7E-4D62-B78D-
33A07166C4B6}');

210

Codolex

 © 2024 GDK Software

Creating your own activity

 Result.AddStringField('PlayMode', '{1DBACDBA-5A4B-4072-A80-
2FE703194F01}');
end;

end.

3. Add entities to generate action to the '...Component.Pas'.
In the Component.pas add the following files to the interface uses:

- DataModel.Entity.Interfaces,

- Codolex.Spring.Collections,

Add the

Add the following class procedure to the protected functions

class procedure DefineEntities(const Entities: IDictionary<string,
IDataEntity>); override;

Add the created unit 'Codolex.Activity.PlaySound.DefinedEntities;' to the

implementation uses section.

This makes it possible to call the class function Get From the unit.

class procedure DefineEntities(const Entities: IDictionary<string,
IDataEntity>); override;
begin
 inherited;
 TPlaySoundDefinedEntities.Get(Entities, CreateDataEntity);
end;

4. Call entities to add in the '...Puggable.pas'.
In the Pluggable.pas add the following files to the interface uses:

- DataModel.Entity.Interfaces,

- Codolex.Spring.Collections,

Add the interface IFlowComponentWithDataEntities to the list of used

interfaces for the plugin object.

Add the following class procedure to the public functions

function GetDataEntities: IReadOnlyCollection<IDataEntity>;

Implement the function by calling the GetDefinedEntities function from the

component

function TPlaySoundPluggableComponent.GetDataEntities:
IReadOnlyCollection<IDataEntity>;
begin
 Result := TFlowActivityPlaySound.GetDefinedEntities.Values;

211

Codolex

 © 2024 GDK Software

Creating your own activity

end;

This ensures the entities are created when the plugin is loaded into codolex.

5. Extra info
It's possible to add multiple entities this way, and it's also possible to add

associations between those entities.

To add an association, use the following code:

...
 var Association :=
ParentEntity.AddAssociationAsParent(ChildEntity);

 Association.Guid := //Generate a guid;
 Association.AssociationType := TAssociationType.OneToMany; //one
to one is also possible
 Association.ChildName := 'ChildNameAssociation';
 Association.Name := 'AssiciationName';
...

8.5 CodeGen

Now comes the most important part: code generation.

In the CodeGen file, you can find an empty procedure code that has the

parameter SourceCode. This is a function from the interface and will be used in

the code generation for a flow when the activity is used. Use this function to add

lines to the generated code. This can be done by the add function on the

SourceCode object. For example, hello world:

procedure TFlowActivityExampleDelphiSource.Code(const SourceCode: ISourceCode);
begin
 Sourcecode.Add('Hello world!');
end;

The source code object has multiple functions that can help with designing the

code. We will cover a few functions that will be used in most activities. Keep in

mind that every function in the SourceCode object returns the SourceCode to be

used in the next line. That enables you to chain the SourcCode functions to make

it easier and more readable.

.Add

The add function adds lines to the code. To start a new line, call another add

function. The contents can be a string or an array of strings.

.IncreaseIndent and .DecreaseIndent

When designing the generated code, it's a good idea to keep in mind that it

should be readable. Thus, having proper indentation is very important. Thankfully,

212

Codolex

 © 2024 GDK Software

Creating your own activity

Codolex uses IncreaseIndent/DecreaseIndent to places the code with spaces

before it in the result. The SourceCode remembers the last indent, so, for a

function or an if-statement where multiple lines need to have a greater indent,

use IncreaseIndent once before, and Decrease Indent once after.

.Begin_ and .End_

This is useful for creating pieces of code that need a begin and end, like if-

statements and loops, but also for functions and procedures. These two functions

simply place a beginning and end tags to your code.

The .Begin_ function automatically increases the indent in the code and the .End_

function automatically decreases it.

SourceCode
 .Add('if not ::SoundFile.IsEmpty then')
 .Begin_
 .Add('sndPlaySound(::SoundFile, ::PlayMode);')
 .End_;

will result in

if not Soundpath.IsEmpty then
begin
 PlaySound(Soundpath, 0, SND_NODEFAULT);
end;

.Param

To help with designing the code, you can define parameters that the SourceCode

object can parse when creating the result. Those parameters can be used in the

add function with double points. "::", as seen above for the SoundFile and

PlayMode parameters.

SourceCode
 .Param('SoundFile', FActivity.SoundFile.Name)
 .Param('PlayMode', TRttiEnumerationType.GetName(FActivity.PlayMode))
 .Add('sndPlaySound(::SoundFile, 0, ::PlayMode);');

will result in

sndPlaySound(Soundpath, SND_NODEFAULT);

Given that FActivity.SoundFile.Name = 'SoundPath' and FActivity.PlayMode =

'SND_NODEFAULT'.

.Variabele

Sometimes you might need a new variable in your generated code. This can be

added with the .Variable function. Provide a name and a datatype. Optionally,

provide a dependency when you need to import a unit for the datatype.

.Variable('TempString', 'string');

213

Codolex

 © 2024 GDK Software

Creating your own activity

will result in

var TempString: string;

There is also an option to declare the param, so that you can use the variable

directly in your code.

.VariableWithParam('TempParamName','TempEnumVar','TMyOwnEnum','Unit.of.enum')

...

.add('::TempParamName');

will result in

uses
 Unit.of.enum
...
var TempEnumVar: TMyOwnEnum;

on the place where the param was added.

.AddDependancy

Speaking of dependencies, you can also use the .AddDependancy function to add

"Unit.of.enum". By default, this use is added in the implementation section. If you

want it in the interface, use:

.AddDependancy('Unit.of.Enum',TUsesSection.Implementation_)

While there are more functions and variations of the mentioned function in the

SourceCode object, you can always find them in the auto-complete, and just try

them out with a few example projects. For our activity, this is enough for now.

SourceCode
 .AddDependency('MMSystem',TUsesSection.Interface_)
 .Param('SoundFile', FActivity.SoundFile.Name)
 .Param('PlayMode', TRttiEnumerationType.GetName(FActivity.PlayMode))
 .Add('if not (::SoundFile = '''') then')
 .Begin_
 .VariableWithParam('SoundFileChar', 'SoundFileWideChar', 'PWideChar')
 .Add('::SoundFileChar')
 .add('::SoundFileChar := PWideChar(::SoundFile);')

 .Add('sndPlaySound(::SoundFileChar, ::PlayMode);')
 .end_;

8.6 Validation

You can see in the generated code above that the assumption is made that a

SoundFile object is always available. The user of the activity has to provide this

214

Codolex

 © 2024 GDK Software

Creating your own activity

file, but it may very well be that the user forgets to provide one, or deletes the

variable that was being used.

To prevent errors in that case, we need to add some validation. We are going to

validate if the soundfile variable is selected in the activity. This can be done in the

Codolex.Activity.YourActivityName.Validator file. This file provides a DoValidate

function to Codolex to execute when the validation is called. This function has the

Variable FElement available which will be the instance of your component when

validating. You can use this element to perform all kinds of validations, like if a

property in the component is filled, when working with numbers in inputs, if the

numbers are correct and within limits, etc.

In the example, an error is thrown when the validator is not changed. However,

let's now change the validator to remove the error. Let's also check if the

SoundFile property is filled, so we know the generated code won't give an error.

resourcestring
 NoSoundFileProvided = 'No sound file provided for %s';

procedure TFlowActivityPlaySoundValidator.DoValidate;
begin
 inherited;
 if not Assigned(FElement.SoundFile) then
 AddError(NoSoundFileProvided, [FElement.ComponentName], 'SoundFile');
end;

.AddError

When the property is not filled, we can add an error to the validator with the

"AddError" function, This function can make use of the format functionality. Be

sure to also provide the name of the property that the error is for. This is not used

for now but can be used in the future to show more specific error messages or

show them in the right place in the editor.

When an error is added for a component, the code generation will not execute,

and an error is shown at the place where the code should be.

.AddWaring

The AddWarning function can also be used to let the user of the activity know

that something might not be right or could be improved. For now, this will also

prevent the code from generation, but this could be removed in the future.

var Soundpath: string;
Soundpath := 'file';
{$MESSAGE WARN '"Play sound": No sound file provided for Template.Core.PlaySound'}

215

Codolex

 © 2024 GDK Software

Creating your own activity

8.7 Testing

When adding code, it's always important to use unit tests. With the example

project, a unit test and integration test project are provided. We will use both

projects. The unit test to test the validator, and the integration to check if the

generated code can be compiled.

Unit test
The unit test project also has an example file that we need to remove, copy and

add to the project.

- "Codolex.Activity.YourActivityName.Tests.pas"

Rename this file the same way as with the components files.

The test project uses the DUnitX TestFramework to perform the unit tests.

Assuming there was no problem with copying and adding the new files, we don't

need to worry about how this works.

By default, three things are tested in the unit test

1. If the creation of the component/activity does not raise an error.

2. If the codegen does not raise an error when called.

3. If the validation does not raise an error by default.

It's recommended to keep these tests in the project, but also expand on them. In

our project, we're going to check if the validator indeed does raise an error if

there is no SoundFile.

To add some extra tests, add a procedure with the [Test] directive

...
 public
 [Setup]
 procedure Setup; override;

 [Test]
 procedure TestCreateComponent;

 [Test]
 procedure TestCodeGenAvailable;

 [Test]
 procedure TestValidatorAvailable;

 [Test]
 procedure Validation;
 end;

This procedure will be executed when the tests are executed.

In this article, we won't dive too deep into the options of the test and validators,

but a good place to start is to copy this line to use the validator. The .Validator

function at the end of the line expects an activity, this is the activity we just

216

Codolex

 © 2024 GDK Software

Creating your own activity

created to test, but can be any activity. You can also add multiple activities to test

in combination.

var Validator := (FPluggable as
IFlowPluggableComponentWithValidation).Validator(SoundFileActivity)
;

The first thing to test is if the validator does indeed return an error when no

SoundFile is provided

var SoundFileActivity: IFlowActivityPlaySound;
SoundFileActivity := TFlowActivityPlaySound.Create;

var Validator := (FPluggable as
IFlowPluggableComponentWithValidation).Validator(SoundFileActivity)
;
var ValidationResults := Validator.Validate;

Assert.IsTrue((ValidationResults.Count = 1), 'Validation has no
result when soundfile is empty');

The assert class contains many static functions to assert something with. In the

example, we used it to check if there are any validation results at all, But you can

also create the expected result and check if it's in the validation results with the

.Contains function. Use the autocomplete to see the functions available. If

something does not pass the check, an error is thrown when executing the unit

tests.

uses
 ProjectModel.Variable.Interfaces,
 ProjectModel.Variable,
...
var Variable: IVariable := TVariable.Create;

SoundFileActivity.SoundFile := Variable;
ValidationResults := Validator.Validate;

Assert.IsTrue((ValidationResults.Count = 0), 'Validation has error
when component is filled correctly');

To complete the test, we're going to create a flow variable, assign it to the

SoundFile, and run the validator again. After that, we can check if the result is 0.

Integration Tests
In the integration test, we are going to test the code directly with a project.

Remove the example file and add a copied file for the activity as well. Select the

project and open the Codolex Project Explorer. Create a new test project, or select

an existing one if you already tested with a project.

Add a module, flow class, and flow to the project, and use the created activity in

the flow.

217

Codolex

 © 2024 GDK Software

Creating your own activity

If you don't find your activity in the activity palette yet, be sure that the

core**0.bpl is built and copied to your appdata folder (%appdata%\Codolex\BPL).

Restart Delphi if needed.Enter topic text here.

After you build your flow, you can use it in the test project with the "Use in code

button" in the simple test function.

After that, you can simply run the integration test project, and see if any errors

pop up.

If you are not able to build the project, something might be wrong with the

generated code. If you can run the project, but the test fails, the generated code

results in an error.

218

Codolex

 © 2024 GDK Software

Creating your own activity

8.8 SynEdit Downloads

Download the synedit for your codolex version

Codolex 2.5.0: CodolexSynEditDR2.5.0.zip

Codolex 2.6.0: CodolexSynEditDR2.6.0.zip

Codolex 2.7.1: CodolexSynEditDR2.7.1.zip

Codolex 2.8.0: CodolexSynEditDR2.8.0.zip

https://codolex.com/downloads/SynEdit/CodolexSynEditDR2.5.0.zip
https://codolex.com/downloads/SynEdit/CodolexSynEditDR2.6.0.zip
https://codolex.com/downloads/SynEdit/CodolexSynEditDR2.7.1.zip
https://codolex.com/downloads/SynEdit/CodolexSynEditDR2.8.0.zip

Command line interface

220

Codolex

 © 2024 GDK Software

Command line interface

9 Command line interface

It is possible to invoke code generation via the command line application. This

allows Codolex to be integrated with a build server or with continuous

integration. CodolexCLI.exe tool can be found in the installation directory of

Codolex, and has following commands available:

 -help : Show help information

 -build <filepath>: Build the given Codolex project

Best practices

222

Codolex

 © 2024 GDK Software

Best practices

10 Best practices

10.1 Source control

Codolex projects have the file extension .fcp. In the location where you save the

Codolex project file, a new folder with the prefix .fc will be created. This folder

contains all the module and flow files. Make sure you add all the files below the

new .fc folder, as they contain the logic of Codolex.

The generated source code will be stored in a new folder named .fsrc. It is a good

idea to add this folder to your code repository too, as this makes it easier to

compare source code updates. Do not make any manual changes to the

generated files as your changes will be overwritten if you compile your Delphi

project.

10.2 Useful tips and tricks

1. Use the shortcut Control+D in input fields to 'stringify' text.

2. Use the Search usage options to quickly navigate through your Codolex

project by right clicking on entities and flows

10.3 Use multiple flows

Much like writing code, it's a good practice to keep flow short and simple.

Think of a flow as a function. let the flow have 1 purpose only.

If you need a flow for multiple things, think about creating multiple flow, and a

new flow that calls the multiple flows.

See the Flow call page for more information67

FAQ

224

Codolex

 © 2024 GDK Software

FAQ

11 FAQ

Codolex forum
We moved the FAQ to the Codolex forum.

Bring the forum a visit, and if you cannot find your answer, don't hesitate to ask a

question...

Visit Codolex FAQ on the forum.

https://forum.codolex.com/c/frequently-asked-questions/10

Release notes

226

Codolex

 © 2024 GDK Software

Release notes

12 Release notes

Find the release for your Codolex version from the following list.

Version 2.8.0

Version 2.7.0

 - Version 2.7.1

Version 2.6.0

Version 2.5.0

Version 2.4.0

 - Version 2.4.1

Version 2.3.0

Version 2.2.1

Version 2.1.0

12.1 Version 2.8.0

Version 2.8.0 is packed with changes, making more options available when using

the Codolex API Server, and making it easier to understand Codolex with the new

project wizard.

And I almost forgot to mention, bug fixes are included...

Highlights

New project wizard
When creating a new project a wizard is shown to help you with the setup. This

includes the option to select a name and location for the project and the

possibility to open the new datasource wizard directly or generate some

examples. This helps greatly to understand the structure of Codolex and provides

some insights on how you can use it.

226

230

231

232

235

241

244

244

248

252

227

Codolex

 © 2024 GDK Software

Release notes

New project wizard

Query and form data parameters
When using the API server generated by Codolex, a flow that is published can use

the HttpRequest parameter to receive information about the request.

In addition to the header values, we have added the association to query values

and form values. This allows for more types of data retrieval from the request.

Added query and form values

List operation: Sort
We added the sort function to the list operation. This is possible for lists with

entities, or ordinal types.

228

Codolex

 © 2024 GDK Software

Release notes

When a list is selected, it's possible to select an attribute of the list to sort on or

provide a comparison with left and right.

Other improvements

Basic authentication
When making a REST call with the activity in Codolex, there is an option to

include basic authentication. We improved this authentication to also work when

using form parameters for sending data.

JSON Export options for datasource
A datasource can now be configured to handle the export of JSON to your needs

on empty values. It contains 3 options, null, 0 or '' values, or exclude from the

JSON.

This option can be set in the 'Manage datasources' overview opened with the

project explorer.

Entity with null field import
When importing entities with JSON, the entities containing 'null' values would get

excluded from the import. We improved Codolex so these fields get imported as

well.

Class variables text search
In the Codolex app, class variables can be found by text search. Clicking on the

search result will highlight the flow class that contains the variable.

Results on search for 'ClassVariable'.

Expression editor for string change
The string split activity (along with other string activities) is given an expression

editor for the input. This makes it possible to check on more combinations, like

the space.

229

Codolex

 © 2024 GDK Software

Release notes

Check on value for attribute in decision activity
When an attribute from an entity is selected in a decision activity, the generated

code add '.value' after the property to check on the actual value instead of the

codolex field.

This solves issues when checking on empty.

Special characters in description
Using special characters like 'é' or 'ã' in descriptions could cause the saved

description to behave strangely.

Project roles
It's also possible to delete project roles from this version and onwards. The delete

checks if the role is used, and asks for confirmation to delete the role and use of

it.

Delete user role.

Small improvements

· In the Codolex app, we added a menu item with a link to the webshop. Check

this link for exiting components that can be added to Codolex.

· The decision expression must result in a boolean. This was not directly obvious,

and is pointed out by a text hint for clarity.

· When searching for usages of a flow, the use of header flow now correctly

shows in the results.

· We made the selected entity directly visible when a 'create variable' activity was

configured with a list and entity.

· Deleting a flow class will not result in a save confirmation when a flow of the

class is open with changes.

· The class Codolex.Framework.Helpers.Rtti is made available for use

when creating an activity.bpl.

Bugfixes

230

Codolex

 © 2024 GDK Software

Release notes

· We added class variables as possible options to select from when using the 'Get

by association' activity.

· We fixed an issue in the decision activity where selected values could be

removed after an undo (Ctr+z) action.

· We made it possible to move a loop in a loop in the editor, this got stuck on

previous versions.

· We made the generated files more stable, sometimes they could get removed

on reloading the project or cancelling a build. This will happen less.

· The Codolex dataset component now correctly performs an update instead of

an insert when an entity is updated.

· AI Chat activity will no longer create 'Might not have been initialized' warning

for the client and response variables.

· The Ctrl+enter hotkey now correctly saves the where-statement in the 'get

from DB' activity.

· We fixed an issue where the autocomplete in the list operation expression

editor resulted in an access violation error.

· We fixed an issue where the validation indicator would not correctly move

together with the activity.

12.2 Version 2.7.0

We are still working on the stability of Codolex, and that's why we want to bring

you version 2.7.0. With no real highlights, but small improvements to make even

more functionality possible in Codolex. And as always, fixing bugs to improve the

stability.

Main Improvements

Filter on dataset
While the CodolexDataset component did have the filter option available by

default, it has not been implemented yet. So we added the implementation in this

version.

That means that the following settings will result in a list of entities with the name

John..

231

Codolex

 © 2024 GDK Software

Release notes

Added validation for entity import
When importing entities with attributes where the type cannot be determined of,

a validation will be shown.

This will prevent the import of entities that might cause errors later on.

Other improvements
· We removed the 'Add view entity' button from a memory datasource to

prevent entities with errors.

· We updated the about Codolex page to include a reference to

DelphiMVCFramework, which is used to create API's

· We increased the size of the add activity button introduced in Version 2.6.0

Bugfixes
· Defined entities in plugin activities can now have the one to one relationship.

· False conversion logs are no longer added after opening a project.

· Fixed an issue with activity size when the caption was smaller then the result

data type.

· An entity used in a loop can now be used in a decision activity inside the loop.

· Improved the generation of the name of class variables created with the 'Create

variable' activity.

· Removed generated by the 'Open AI Chat' activity.

12.2.1 Version 2.7.1

When testing version 2.7.0. it became clear that in some situations, the

installation did leave out one or two important files. Causing the application not

being able to start.

We tried to address this issue in 2.7.1, and release it instead of 2.7.0 to prevent

errors on the installation of the new version.

In addition, a change made to the API is released with this version as well.

Main Improvements

Multiple custom paths for flows published as endpoint
When making a flow available as an endpoint you had the option to provide one

path as a custom path. We added the option to provide multiple paths.

232

232

Codolex

 © 2024 GDK Software

Release notes

Separate the paths with a ';' to provide multiple paths. Both will lead to the same

flow.

Bugfixes

The Application Was Unable to Start Correctly
In some cases, this error could pop up after the installation of Codolex. This could

be caused by Windows Defender.

We tried to solve this issue in the new version. If this issue still arises. More

information can be found on the forum:

Codolex forum

12.3 Version 2.6.0

We are happy to release the update Codolex 2.6.0. Just like the last version, we

focused on improving flow handling and making the editor more reliable.

Design flows even faster with this new version.

Highlights

Add activity button
We want to focus on development speed, and bringing down the amount of

actions you need to get a new activity on the screen.

That's where the next button comes in.

Every sequence contains an 'Add activity' button that is visible when hovered

over by the mouse.

https://forum.codolex.com/t/the-application-was-unable-to-start-correctly/37

233

Codolex

 © 2024 GDK Software

Release notes

Add activity button visible on hover

Clicking this will directly take you to the add activity screen.

Other improvements

Parameter default value
A parameter can be provided with a default value in the properties. This default

value is visible in the call flow screen.

Default value 'Test' for parameter 'Testing'

Editable parameter position
Speaking about parameters, we made it possible to move the position of a

parameter in a call flow action.

Using the right order for parameters can be helpful to make actions more

readable.

234

Codolex

 © 2024 GDK Software

Release notes

Order of parameters in flow properties

ChatConfig for OpenAI chat
To make all the options possible when using ChatGPT, we added the ChatConfig

entity. This entity includes all the options found in the documentation.

Create the entity, and fill the attributes/options that you want to use. This entity

can be used in the activity to override other settings.

Open AI Activity

Expression editor for decision
When no variable is chosen in the decision editor. there is an expression field

available.

This field can be used to make an expression that results in a boolean. e.g.

Assigned(Object) to check if an object is assigned.

https://platform.openai.com/docs/api-reference/chat/create

235

Codolex

 © 2024 GDK Software

Release notes

Decision expression editor

Create entity without fields
It's now possible to create an entity without fields. This is used for entities that

only contains associations.

Bugfixes

· Uses for custom variables are now correctly added to the interface section

when used as a return variable.

· Removed datasource type none to prevent errors.

· The API now correctly returns 0 for number attributes containing 0 instead of

null.

· Fixed a bug where an incorrect suffix is used in code generation for variables.

· Fixed a bug where moving an activity inside a loop could cause it to bounce to

the other side.

· The name generator for the variable no longer overwrites a name set by the

user.

· Fixed an access violation when synchronizing fields on view entities without an

inherited entity.

· Fixed the rendering shadow for the merge activity.

12.4 Version 2.5.0

Codolex 2.5.0 aims to improve existing components and offer stability. We added

features such as the expression editor to components that did not receive the

editor update earlier. Expanded on the REST activity to include pagination and

resolved quite a few bugs. This all makes version 2.5.0 a must have when you

look to include Codolex in your development process.

Highlights

REST Activity pagination
As mentioned in the intro, we added a pagination option in the REST activity.

There are quite a few API's that use this structure because of large data heaps.

236

Codolex

 © 2024 GDK Software

Release notes

Use the pagination option in this case to get all the records directly into a List

variable, instead of performing the call in a loop and adding the results together

manually.

You can specify in the activity where the parameters for page size and number

have to go in the request, and if all objects or just this page should be returned.

The latter can be useful if the API does not support a structure that the current

activity can make use of, but we will include more options later on.

With this change, the result options are also expanded.

237

Codolex

 © 2024 GDK Software

Release notes

This was needed for the pagination changes, the result of that is a collection, and

that option is now available.

You can get your results in JSON or let the activity directly convert that JSON to

an entity.

Windows authentication for local datasources
Some databases enable windows authentication, for example, sequel server. So to

make connecting with these databases easier we added the option of using the

windows authentication.

238

Codolex

 © 2024 GDK Software

Release notes

Other improvements

Api folder added to search path
The .API folder used for flows exposed as API, is now added to the search path by

default. This allows you to make use of the API and start it in the same Delphi

project without having to include the files yourself.

Expand/collapse in project explorer
With larger projects, the project explorer collapses the modules and flow classes

by default. It's still possible to expand them all in one click, but to improve the

overview of large projects, the collapse can be a useful feature.

239

Codolex

 © 2024 GDK Software

Release notes

Highlight the open flow in the explorer
The open flow in the editor is highlighted in the explorer. This improves clarity

when switching between flows rapidly.

Parse collection from entity to JSON
The activity can make use of a collection of entities, and convert it to a JSON

collection.

Close all in search results closes the results tab.
This works better in the codolex app vs. the IDE.

Expression added to more activities
For some activities, the editor was not yet updated to the new expression editor.

For example the show dialog.

We added this to the activities where it just made sense to use the editor.

New activity: Clone entity
Instead of the existing copy attributes activity, the clone entity activity makes a

new object from a current entity.

Class variable is available in more places.
In activities where a variable can be selected, the class variable is now directly

available as option.

240

Codolex

 © 2024 GDK Software

Release notes

OpenAI Chat improvement
We added the option to select a role, more about roles:

https://platform.openai.com/docs/guides/chat-completions/overview

JSON date/time conversion
When importing or exporting data, the format YYYY-MM-DD HH:MM:SS (ISO

8601) is recognized and used to directly work with date time attributes.

Validations for flow names
We added better validation for flow names. Especially with duplicate names after

adding or editing the name.

Adding flows with the same name or an empty name could lead to errors, so we

wanted to prevent errors instead of solving them.

Validations for database file
When the database (e.g. sqlite db) is an referenced file. The local datasource

connection tries to check if there is a file on the given location before trying to

connect.

Updated support for TArray<T> type
Some activities needed a custom array variable to make use of an array, this

results from the activity being added before the addition of the array.

We corrected the activities to offer the correct array type as possibility.

Bugfixes
· Error message when loading a .BPL file now shows the whole bpl name.

· View entities are now always generated after the entities they are based on to

prevent errors

· Copy of an activity with an exception handler no longer results in a left over

sequence.

· Added a fix for the project explorer visibility in D12.1.

· The datasource view for one to many associations had the wrong direction. we

changed the direction to make the view matching with the structure.

· Removed warning when using the result of execute command as flow result.

· Resolved a compile error when using a JSON entity with a parent and attribute

with the same name.

· Resolved some memory leaks.

· Activity palette is now scrolled to the top instead of bottom after opening a

flow.

· Using an attribute of a flow class entity in a decision does no longer result in an

error.

· Used the right order for attributes in the create/change variable editor.

· Resolved an error where MVC Framework files could interfere with each other

after installation.

· Fixed an issue with remainder name in the math calculation activity using

integer division.

https://platform.openai.com/docs/guides/chat-completions/overview

241

Codolex

 © 2024 GDK Software

Release notes

· Corrected the naming for 'squared' and 'square root' in the math calculation

activity.

12.5 Version 2.4.0

Highlights

HttpResponse for Rest activity

The Rest activity now has an option for HttpResponse, an integrated codolex

entity that contains all the response details. This can be used to retrieve the status

code, or the headers via the association that contains a HttpHeaderValue list.

Show where what is used
The flow editor can show where a variable or parameter is used or what it uses.

The selected activity is the date/time conversion.

242

Codolex

 © 2024 GDK Software

Release notes

It shows that it uses the parameter date input with the blue highlight.

It shows that the result variable DateToIso is used as return value in the flow with

green highlight at the end activity.

This can greatly help in figuring out how the flow is made and will be handled.

Added options for API server
When exposing a flow as API endpoint, the server files are generated for usage in

the project. The server is expanded with several options.

1. Ssl Setup
The TIdHTTPWebBrokerBridge has been made available trough the property

SeverInstance to add more configuration options like SSL .

2. Swagger info assignment
The swagger information can be updated for correct documentation.

FApiServer.WithSwaggerInfo(

 function: TMVCSwaggerInfo

 begin

 Result.Title := 'TestProject API Server';

 Result.Version := '2.4.0';

 Result.Description := 'TestProject API Server generated by Codolex';

 Result.ContactEmail := 'info@codolex.com';

 end

);

Updated swagger info example

3. Added body parameters for flow endpoints
When a flow can be called with parameters, the documentation now provides info

of the parameters.

4. Api settings
In the menu, an option for settings is added. These settings include only one

option for now, but more will be added in the future.

The option that has been added is 'generate entities with persistent state'. This

determines if the state of an entity is added in the json when an entity is directly

retrieved from the database with an api call.

243

Codolex

 © 2024 GDK Software

Release notes

Features

The editor is easier to navigate
From now on, you can navigate the flow editor with right mouse click and

moving the mouse.

And when moving the focus with the scroll bar, the editor moves along while

scrolling. not updating after moving.

Save object can now save lists.
This saves the time of making a loop and saving the objects 1 at a time.

Other improvements

1. About information updated whit link to Codolex and GDK Software website

2. Defined entities for custom activities can aslo be defined with attributes.

3. Show dialog result is optional to prevent hints in RAD Studio.

Bugfixes

1. An issue where double round calls where done in one 'round' activity has

been resolved.

2. Errors when doing a copy/paste action with a loop has been resolved.

244

Codolex

 © 2024 GDK Software

Release notes

12.5.1 Version 2.4.1

This version is a fix for version 2.4.0

Bugfixes
We fixed an error that could arise when the DMVCFramework was installed.

It could confilct on some units that were contained in Codolex framework and the

DMVC framework.

The conflicting files are not included in the Codolex framework anymore.

12.6 Version 2.3.0

Highlights

AI Chat activity
Codolex provides the opportunity to make use of the latest technologies in

Delphi, and with this version, ChatGTP is also on the list.

The AI Chat activity makes use of the Open AI API to ask and recieve answers

from ChatGTP.

All you need is an API Key and choose a model to chat with, and you can use the

online tool however you like.

https://github.com/danieleteti/delphimvcframework

245

Codolex

 © 2024 GDK Software

Release notes

Setting associations
When building data in Codolex to save or to send, the options on setting

associations were limited, or not very clear on some occasions. With Codolex 2.3

we made it possible to set associations directly with a change entity or create

entity activity. This removes the hassle of setting id's manually and saving the

entities before you could complete the structure.

246

Codolex

 © 2024 GDK Software

Release notes

Addition of data type JSONValue
Working with JSON got much better in Codolex 2.3 with the addition of JSON

Value and some activities

These activities allows for converting JSON text into JSON object. And with the

JSON object you can get values directly without converting them to entity's or

searching to the text.

You can also convert a JSON back to text to save it in a file or send it with

requests for example.

You can also use the TJSONValue as data type when creating a variable, setting

the type of a parameter or defining the attributes of your entity in a non-database

datasource.

247

Codolex

 © 2024 GDK Software

Release notes

Other features

Plugin datasources
Some activities from now on might return a custom entity instead of primitive

values or the need to provide a custom entity. The new chat message for example,

the activity want's to return more than just a string with an answer, so it will

provide the chat message entity. This entity is available in Codolex by default and

can be seen in the menu.

These datasources are readonly for inspection, and can be added by other

activities in the future.

NexusDB Connection
If you use nexusDB as your preferred database, you can configure Ccodolex to

use it. For more information on how to connect:

· Custom database connections

· Nexus DB

Improvements
1. Captions of flow activities will generate with variable names and be more clear

by default.

2. Name and password fields of basic authentication in the REST activity are now

parameter fields.

3. Name spaces for custom types can be directly added when declaring variables

and flowclass variables.

4. Codolex Version number is now visible at RAD Studio startup

5. Stringify option is directly visible instead of hidden in a menu

6. Small improvements for the expression validator, like multiline checking and a

button to validate.

7. Text search for decisions and loops

49

49

248

Codolex

 © 2024 GDK Software

Release notes

8. Filter in activity properties

9. Creation of a flow class variable is now possible for use in the flow call activity

Bugfixes
1. Solved duplicate code when using decisions and merge activities

2. Using the save to DB action on entities that have no changes will no longer

result in errors

3. Using variable names that are the same as the project will no longer result in

errors

4. Database params for field generators are now correctly added

5. Improved handling of dragging activities in the flow editor

12.7 Version 2.2.1

Highlights

Addition of class variable
To make it easy to work with multiple flows that needs the same variable, we

have added the flow class variable. this variable can be of any type, and is useable

by every flow in the flow class. To add a flow variable, open the flow class menu

by right clicking the flow class in the project explorer, and selecting "Add variable"

This opens the properties screen for a flow class variable, where you can set the

name and type

249

Codolex

 © 2024 GDK Software

Release notes

Once created, the variable needs to be initialized in a flow, and can be used in

every flow, where a variable can be selected.

250

Codolex

 © 2024 GDK Software

Release notes

To delete a class variable, open the properties and select, delete variable

Expression validator
A new feature which is going to help immensely with writing expression right is

the expression input evaluator. The evaluator checks if the expression results in a

valid input for the property or action. For example, when setting the value of a

string variable, the evaluator checks if the expression results in a string.

Other features

Command activity
A new activity "Execute command" has been added. This activity helps in

retrieving data from the database.

The activity lets you run a command on a database and get a result directly into a

variable without retrieving the result into an entity. This is great for sql

commands like count or max, or other commands where only one simple result

variable like a string or integer is needed.

251

Codolex

 © 2024 GDK Software

Release notes

List as asstribute
For memory databases like a JSON database, it's possible to set an attribute as

collection. This makes it easy to add a list to an entity, and let it export in a JSON

as an array.

Improvements

Flow editor canvas improved
The canvas works better when dragging an activity to the end of the canvas,

allowing for easier expension of the canvas.

Bugfixes
1. The canvas alignment option are available for the start and end nodes in a

flow

2. Fixed an issue that made a loop not moveable in some cases

3. IsValidFileName now correctly checks the entire file name

4. Fixed an exception that could arise when dragging the create activity in a flow

after searching on entity

5. Binary fields are only included in an update query when changed from now

on.

6. Validation errors now move correctly with an activity when the position is

changed.-

252

Codolex

 © 2024 GDK Software

Release notes

12.8 Version 2.1.0

Highlights

Duplicate a flow
It is now easy to duplicate an existing flow from the context menu of the flow. A

dialog will appear where you can enter a new name for the flow and then a copy

of the flow will be added to the flow class. This allows you to easily use the base

of an existing flow for a new flow.

Add activities on a sequence
Right-click on a sequence to add an activity directly in the right place. Instead of

switching between the flow and the palette, there is now a quicker option. The

palette opens into a search dialog where you can type directly to find the right

activity. Use the down arrow to jump to the list and select the activity. Double-

click or Enter to insert the activity into the flow. Shift+Enter inserts the activity

and immediately opens the Properties dialog.

253

Codolex

 © 2024 GDK Software

Release notes

Working with decisions
When adding a decision, the properties dialog immediately displayed the

validation message that a sequence with a condition had to be added. This

message no longer appears in the decision properties dialog, as you can't change

anything at this point.

It is also now possible to arrange the sequences of decision conditions in a

specific order. This is important for code generation. The order can be important,

especially when working with numbers.

254

Codolex

 © 2024 GDK Software

Release notes

New Clipboard activities
New activities have been added to use the VCL clipboard functionality. It is now

easy to write to, read from and clear the clipboard.

Improvements
1. A new Information tab has been added to the properties dialog for an activity.

This tab contains an input field which allows you to change the caption/title of

the activity. This helps to make the flows more readable.

2. Firebird can now be selected as the database server for a datasource. This

means that a specific Firebird SQL dialect is used to generate statements for

entities and database queries.

3. Generators are now imported from a database. A generator can be associated

with a field in the data entity edit dialog. This generator will then always be

used in insert statements for that entity. Generators are supported by the

Oracle and Firebird database server options.

255

Codolex

 © 2024 GDK Software

Release notes

4. The field definitions of the Codolex dataset now include the precision and

scale for numeric fields as defined in the data entity.

5. You can now also use Ctrl+D in a list of properties to apply the stringify

function. For example, when creating or modifying a variable with an entity or

when calling a flow with parameters.

6. It is now possible to use literals in the text of a custom query when selecting

columns. For example, a fixed text or a number instead of a column name.

7. Added the ability to add and use form data parameters to REST operation

parameters.

8. Validation messages produce warning messages in the generated code. Even

if they are informative. It also blocks the generation of code for the activity.

This has been changed. Informative validations will not block code generation

and produce hint messages instead of warnings.

9. It is now possible to clear a variable selection in property dialogs.

10.Other small changes to improve the JSON import, make labels in activities

clearer, fix tab order in property dialogs and make the editor more stable.

Fixes
1. Boolean fields are now converted to JSON as true and false instead of -1 and

0.

2. The select statement of a view entity containing an updatable entity is now

saved correctly after changing.

3. When a field of an entity variable is used, the condition will now produce the

correct code statement.

4. It is no longer possible to drag connected activities into a subflow.

5. The flow is now better displayed in the flow editor when the source code

preview is open. Variable names now remain visible.

6. When adding a parameter to the REST operation, the value of the selected

parameter is no longer displayed. The fields are empty.

7. Pressing Ctrl+D in an empty input no longer throws an exception.

8. If an entity field was updated and the entity instance was also used in a

dataset, an error message was displayed if the modified field was not defined

as a field in the dataset. This has been fixed.

9. Changes to the project, a data entity or a data flow can cause validation

notifications in other data flows. These validations did not always reflect

correctly in the editors of open flows.

10.The Codolex dataset now throws an exception if LoadEntities is called while

the dataset is active.

	Tables
	Table of Contents
	Introduction
	The idea behind codolex

	Getting started with Codolex
	Installation
	IDE integration
	Your first Codolex Application
	Create a new project
	Add a module
	Editing flows
	Using flows in code
	Adding a datasource
	Using entities

	Codolex Concepts
	Project explorer
	Modules
	Flow classes
	Flows
	Data sources
	Local data sources
	Entities
	Search

	Code generation
	Automatic code generation
	Manual code generation
	File structure

	Flows
	Flow handling
	Start and End
	Flow results
	Parameters
	Visibility
	Code preview
	Validation

	Codolex API
	API Setup
	Exposing Data
	Adding endpoints with flows
	Configure security

	Data sources
	Local data sources
	Connecting to databases
	Custom database connections
	Nexus DB

	Entities
	Nullable fields
	Importing data structures
	IniFile Datasource
	JSON datasource
	Plugin datasources

	Activities
	Structural
	Parameters
	End
	Start
	Sequences
	Decision
	Merge
	Loop
	Exceptions

	Core
	Flow call
	Code snippet
	Use unit

	Clipboard
	Write to clipboard
	Read from clipboard
	Clear clipboard

	Database
	Get from DB
	Save object
	Delete object
	Transactions
	Start transaction
	Commit transaction
	Rollback transaction

	Execute command

	Date/Time
	Calculations
	Check
	Conversion
	Decode
	Encode
	Format
	From
	Operation
	Utils
	Validation

	Dialogs
	OpenDialog
	SaveDialog
	ShowDialog
	Show modal form

	Encoding
	Decode
	Encode

	Entity conversion
	Entity to JSON
	JSON to entity
	Entity to key/value
	Key/value to entity

	File system
	Copy file/folder
	Create file/folder
	Delete file/folder
	Exists file/folder
	Get path part
	Get system path
	Listing file/folder
	Move file/folder
	Path validations
	Read file
	Write file

	Hashing
	Hash file
	Hash string/bytes

	Import/Export
	CSV export
	CSV import

	IniFile
	IniFile Read
	IniFile Write

	JSON
	Text to JSON
	JSON to text
	Get JSON value

	Math
	Calculation
	Checks
	Finance
	Rounding

	Rest operation
	Regular expressions
	Options
	Escape chars
	IsMatch
	Split string
	Search match
	Replace match

	String utils
	String change
	String check
	String conversion
	String find
	String parts
	String split

	Variables
	Create variable
	Clone entity
	Change variable
	List Operations
	Copy entity data
	Free Object
	Get by association

	Zipping
	Create/open zip file
	Extract zipfile
	Add to zipfile
	Close zipfile
	Listing zip
	Read zip

	Advanced
	OAuth2

	OpenAI
	AI Chat

	Creating your own activity
	Getting started
	Implementation
	Tags
	Defined entity
	CodeGen
	Validation
	Testing
	SynEdit Downloads

	Command line interface
	Best practices
	Source control
	Useful tips and tricks
	Use multiple flows

	FAQ
	Release notes
	Version 2.8.0
	Version 2.7.0
	Version 2.7.1

	Version 2.6.0
	Version 2.5.0
	Version 2.4.0
	Version 2.4.1

	Version 2.3.0
	Version 2.2.1
	Version 2.1.0

